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Abstract 

This report summarizes the work completed in the year June 1997-May 1998. The report 

is divided into two parts, one covering the work on orthotropic composites and the other 

covering the work on isotropic metals. Each part consists of two chapters which stand alone, 

each having been submitted, accepted or prepared for publication in a refereed journal. 

Separate bibliographies are given for parts I and II. The work on composites has succeeded 

in producing fundamental, dynamic Green's functions solutions for cracks in orthotropic 

materials. These solutions may be used in calculating the stress intensity factor history on 

stationary cracks subjected to dynamic loading and may be very useful in predicting crack 

initiation under such conditions. Currently, experimental investigation of the application of 

these solutions to crack initiation in composites in two different configurations is beginning. 

It is expected that a report on that work will be submitted next year. The work on metals 

has been successful in experimentally demonstrating the usefulness of the dynamic stress 

intensity factor in predicting shear failure in metals under impact loads. This demonstration 

is predicated on the assumption that small scale yielding conditions exist in the experiments. 

The last chapter reflects an ongoing experimental investigation into the validity of that 

assumption. It seems to suggest that the assumption is correct, but further, more conclusive 

results are sought. 
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Chapter 1 

Fundamental Solutions for the Stress 
Intensity Factor Evolution in Finite 
Cracks in Orthotropic Materials 

Co-authored with C. Rubio- Gonzalez and submitted to International Journal of Fracture 

Abstract 

The elastodynamic response of an infinite orthotropic material with finite crack under con- 

centrated loads is examined. Solution for the stress intensity factor history around the crack 

tips is found. Laplace and Fourier transforms are employed to solve the equations of motion 

leading to a Fredholm integral equation on the Laplace transform domain. The dynamic 

stress intensity factor history can be computed by numerical Laplace transform inversion of 

the solution of the Fredholm equation. Numerical values of the dynamic stress intensity fac- 

tor history for some example materials are obtained. This solution can be used as a Green's 

function to solve dynamic problems involving finite cracks. 

1.1    Introduction 

With the growing use of composite materials in engineering applications, the need for fun- 

damental understanding of their mechanical behavior becomes imperative. Dynamic crack 

propagation in composite materials and the response of cracked composite bodies under dy- 



namic loads is a subject that has been investigated, both theoretically and experimentally, to 

a large extent. But while many exact solutions exist for the stress field around stationary and 

propagating cracks in isotropic solids, (Freund 1990, Parton and Boriskovsky 1989) only a 

few solutions are available for the stress field around stationary (Kassir and Bandyopadhyay 

1983) and propagating (Stroh 1962) cracks in anisotropic solids. This may be due in part, 

to the mathematical complexity of such problems. Integral transform methods are usually 

the techniques employed to solve problems involving cracked orthotropic bodies subjected 

to impact loads (Kassir and Bandyopadhyay 1983, Shindo and Nozaki 1991a, Shindo and 

Nozaki 1991b). This approach leads to a Fredholm integral equation on the Laplace trans- 

form domain, rather than a Weiner-Hopf equation (Freund 1974) as is found for isotropic 

materials. The dynamic stress intensity factor on the time domain is recovered, in the most 

difficult step of the analysis, by numerical inversion of the solution of the Fredholm equation. 

This process can be numerically challenging and computationally intensive. 

In this work, the problem of an infinite orthotropic body with a finite crack subjected 

to suddenly applied line loads on the faces is examined. The crack lies on the principal axes 

of the material. Roessig and Mason (1997) have shown that a solution of this problem is 

very useful in the analysis of the impact of blunt objects and fragments on solids, and the 

line load solution derived here can be used as a Green's function in a variety of problems 

involving finite cracks. The Green's function presented here, the solution related to the 

geometry shown schematically in Figure 1.1, has not been reported to date although the 

quasi-static solution is presented by Isida (1972) as 

where Xo, Q and a are defined in the figure. The solution of the problem for the isotropic case 

should be identical to that of Freund (1974) for a semi-infinite crack for times r < (a+xo)/cd 

where cd is the dilatational wave speed. Freund solved the elastic wave propagation problem 

in the isotropic infinite body with semi-infinite crack by linear superposition of a fundamental 

dislocation solution. His exact solution for this problem serves as a useful verification of the 
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numerical Laplace transform inversion methods used here. 
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Figure 1.1: Schematic of the finite crack geometry with two pairs of opening concentrated 
loads. 

As noted before, the most difficult step in the solution method is the numerical inversion 

of the Laplace transform. A method using Jacobi or Legendre polynomials to represent the 

function in time has been used in the past to invert the Laplace transform of the stress 

intensity factor (Kassir and Bandyopadhyay 1983, Shindo and Nozaki 1991a, Shindo and 

Nozaki 1991b). This type of spectral representation of the function in time leads to smoothing 

of the function and the loss of information at discontinuities. As a consequence, it is believed 

(Parton 1989) that such an approach cannot lead to the exact determination of the points 

of discontinuity of the stress intensity factor. It is expected in the problem analyzed here, 

from the nature of Fruend's (1974) solution for isotropic materials, that the stress intensity 

factor will be discontinuous and that the points of discontinuity will have physical meaning 

in terms of the arrival of various wave types at the crack tip. Hence, it is desirable to capture 

the discontinuities and, consequently, a different technique for the numerical inversion of the 

Laplace transform of the stress intensity factor is required. Under certain circumstances 

the Laplace transform is equivalent to the Fourier transform (Papoulis 1962). That is the 

case for this problem and therefore the inverse fast Fourier transform is used in this work to 

recover the stress intensity factor in the time domain. It was found that using other methods 

to invert the Laplace transform, e.g. Honig and Hirdes (1984), gave similar results although 

11 



they required more computational effort. 

Two problems with different load configuration are solved. First the problem of a finite 

crack with two pairs of opening concentrated loads at x = =tXo (figure 1.1) is considered. 

The second problem is that illustrated in figure 1.2(a) where the crack has only a single 

pair of concentrated loads at x = Xo- The quasi-static stress intensity factor for the second 

problem, figure 1.2(a), at the crack tip x = +a is given by (Isida 1972) 

Q Kt(t = oo) = a + Xo 
(1.2) 

Figure 1.2: Schematic of the finite crack geometry with a single pair of concentrated loads, 
(a) Original problem which is solved by a superposition of, (b) a symmetric problem and, 
(c) an antisymmetric problem. 

1.2    Governing Equations 

Consider the plane problem of an infinite orthotropic medium containing a finite crack, 

Figure 1.1. Let Ei} //„• and i/y (i,j — 1,2,3) be the engineering elastic constants of the 

material where the indices 1, 2, and 3 correspond to the directions (x,V>z) of a system of 

Cartesian coordinates chosen to coincide with the axes of material orthotropy. The crack 

plane is 77 = 0 and the origin of the XV axes is the mid-point of the distance between 

the crack tips. Henceforward, the coordinate x will be normalized with respect to a. The 

normalized coordinates x = xla and V = v/a are introduced such that the crack tips are 

located at x = ±1 and the loads at x = ±x0. The normalized time t is introduced in the 

form t = csr/a where cs = ypn/p with p being the mass density.   Concentrated normal 

forces of magnitude q are applied as shown and tend to separate the crack faces. 

12 



The problem under consideration is restricted to two dimensions with wave propagation 

in the x — y plane only. By setting all the derivatives with respect to z to be zero, it is 

readily shown that the displacement equations of motion (Nayfeh 1995) in the normalized 

coordinates reduce to 

d2u     d2u     „ . d2v d2u Cllä? + v + (1 + Cl%^ - w (L3) 

d2v d2v     . . d2u d2v ,     . 
W+C22öy-2+(1 + C^8^     =      W> (L4) 

where u and v are the x and y components of the normalized displacement vector and cn, 

C12 and c22 are non-dimensional parameters related to the elastic constants by the relations: 

Cn      fi12[i-(E2/E1yuy 

c22   =   {E2/E1)cn, (1.5) 

Cl2     =    ^12C22 = ^2lCn, 

for generalized plane stress, and by 

C22     =      T-(l -Vi$V$i), 
A*12A 

Cl2     =      X(^l + ^^13^32), (1.6) //l2A £q 

A     =     1 - 1^12^21 - ^23^32 - ^31^13 ~ ^12^23^31 ~ ^13^21^32, 

for plane strain. In the orthotropic solid, cs represents the velocity of the in-plane shear 

wave propagating along the the principal material axes. The stresses are related to the 

displacements by the equations: 

ax du dv 

/Z12 ox dy 
(Tv du dv 

ci2^- + c22—, (1.7) 'y 

A*i2 Ox dy' 
7V,, du     dv 'xy 

Hu dy     dx' 
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The corresponding boundary conditions are 

<ry(x,0,t)   =   -a(x)H(t)    for    |x| < 1, 

Txy(x,0,t)   =   0       for    |x|<oo, (1.8) 

v(x,0,t)   =   0       for    |x| > 1, 

in addition to the condition of zero displacements at infinity and zero initial conditions. The 

traction a(x) is a known function of x and H(t) is the Heaviside step function. 

Equations (1.3), (1.4) and (1.8) constitute a mathematical statement of the problem. 

Because the nature of the boundary conditions in equation (1.8), this is a mixed boundary 

value problem. For the moment, a(x) represents a general load on the crack faces, later it 

will be substituted with a function representing the line loads. 

1.3    Method of Solution 

The method of solution of the governing equations presented here follows that of Kassir and 

Bandyopadhyay (1983), Chen and Sih (1977), and Sneddon (1966). In equations (1.3) and 

(1.4), the time variable may be removed by application of the Laplace transform 

f°° 1      r 
r(p) = /    /(*) e~vt dt,    f{t) = -i, /   f*{p) e* dt, (1.9) 

JO ZlTl JBT 

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary 

axis in the p-plane. Applying relations (1.9) to equations (1.3) and (1.4) and assuming 

zero initial conditions for the displacements and velocities, the transformed field equations 

become 

d2u*     d2u*      . , dV       2 , 
Cn-W+-W+{lJrCu)~dxTy-pu   = °' (L10) 

dV d2v*     ., , d2u*       2 . 
^ + C^W + {1 + Cu)dx^-pV     =   °' (L11) 

where the transformed displacement components, u* and v*, are now functions of the vari- 

ables x, y, and p. The application of the Laplace transform to the boundary conditions (1.8) 

14 ' 



gives 

ffyfoO.p)   =   -a(x)-    for    \x\ < 1, 

^(z,0,p)   =   0       for    |ar|<oo, (1.12) 

v*(x,0,p)   =   0       for    \x\ > 1. 

To obtain a solution of the differential equations (1.10) and (1.11) subject to conditions 

(1.12), we exploit the symmetry of the problem by letting 

roo 

u*(x,y,p)   =    /    A(s,y,p)sm(sx)ds, (1.13) 
JO 

roo 

v*(x,y,p)   =    /    B(s,y,p)cos(sx)ds, (1.14) 
J u 

where A and £ are the Fourier sine and cosine transforms of the Laplace transform of the 

displacements, u* and v*, respectively, and are yet to be determined. Substituting these 

transforms into equations (1.10) and (1.11), the functions A and B are found to satisfy the 

simultaneous ordinary differential equations 

d2A     ,_ ,  dB 
(cns  +p*)A- — + (l + c12)s—   =   0, (1.15) 

(S
2+p2)B-c22—-(1 + Cl2)s—   =   o. (1.16) 

The solution of these equations which vanishes for \y\ -» oo is 

A(s,y,p)   =   A1(s,p)e-'liy + A2(s,p)e-'r21', 

B(s,y,p)   =   ^-A1(s,p)e-^y + ^A2(s,p)e-^y, (1.17) 
s s 

where Ax and A2 are arbitrary functions and ctj{s,p) stands for the functions 

Cns2+p2-72 

°Art=     (1+Cl2)7/.    J = l,2 (1.18) 

with 72 and 7I being two distinct roots of the quadratic equation 

C2274 + [(c2
2 + 2c12 - cnc22)s

2 - (1 + c22)p
2]j2 + (Clls

2 +p2)(s2 +p2) = 0. (1.19) 
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It can be shown that for many materials the roots 7x and 72 are real and positive and the 

expressions for the displacements in the Laplace transform domain become: 

u* 
roo 

/   {Axe'™ + A2e~™) sm(sx)ds, (1.20) 
»0 

v*   =    r^Axe-w + a^e-^f^^-ds, (1.21) 
Jo s 

and using (1.7) the corresponding expression for r*y is given by 

/■OO 

r*y = -nl2 /    [(ai + 7i)Aie"711' + {a2 + 72)^-™] sin(sx)rfs. (1.22) 
<* 0 

Applying the second condition of (1.12) to equation (1.22) yields 

MS>P)   =   -ßAi{s,p), 

ß   =   24*. (1.23) a2 + 72 
v       ' 

Therefore the expressions for the transformed components of displacement become 

/•OO 

u*(x,y,p)   =    /    {e~™ - ße-™)A1(s,p)sm(sx)ds, (1.24) 

v*(x,y,p)   =    f0O(a1e-
rnv-ßa2e-'nv)^^-cos(sx)ds, (1.25) 

•/ 0 o 

and the associated stress components are given by 

<   =   ^12 l°°l(cns2 - aaicn)e~™ - (cns2 - CL2l2cl2)ße-™}A^S,p) cos(sx)d^.26) 

°*y   =   A«i2 J"[(c12s
2 - ai7ic22)e-

7lj' - (c12s
2 - a2j2c22)ße-™}^^- cos(sx)d^.27) 

/•oo 

<y   =   -A»i2 /    (ai+7i)[e~7lJ/-e~72j']Ai(s,p)sin(srr)ds. (1.28) 

Introducing the functions 

£(s,P)   =   -{an - ßa2)A1{s,p), (1.29) 

F^'^   =    (ax - ßa2)s^
Cl2s2 ~ ttl7lC22 ~ ß(Cus2 ~ a272C22)]' (1'3°) 

*   =    cn(l + Jw + N2)
{(C'2 + Cl2 ~ O"0")^™ ~ '") 

-c22[cl2N
2N2 + Cxx{Nl + iVxiV2 + JV2)]}, (1.31) 

W?,2    =    ^-{C11C22 - C2
2 - 2C12 ± [(C11C22 - c2

2 - 2c12)
2 - 4cllC22]1/2},     (1.32) 
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and in view of the first and third boundary conditions in (1.12), equation (1.25) and (1.27) 

yield the following pair of dual integral equations for the determination of the function 

D(s,p) 

f°° (T(X) 
/    s F(s,p) D{s,p)cos{sx)ds   = y-f-       0 < x < 1, (1.33) 
Jo ßi2^P 

roo 

/    D(s,p)cos(sx)ds   =   0       x > 1, (1-34) 

where a(x) is the distributed load along the crack faces. The constant f in (1.30) has been 

chosen such that for large s, the function F(s,p) becomes 

F(s,p) = l + 0(l/s) 

Using cos(sx) = ^^J^i/2(sx) and defining D(s,p) = s1/2D(s,p) and r^s^) = 

F(s,p) — 1, these last equations can be written as 

r°° _ 
/    s[ri(s,p) + l]D(s,p)J_1/2(sx)ds   =   g(x)        0 < x < 1, 

J o 
/■oo 

/    D(s,p)J_l/2(sx)ds   =   0        x > 1, 

where 

9(x) = -\ -f- (1.35) 
V ■KX Hi2^p 

Following the procedure given by Sneddon (1966), the function D(s,p) of the original 

integral equations (1.33) and (1.34) can be found in terms of another unknown function, 

$(r,p), in the form 

D(s,p) = ^— / w1/2$(w,p)J0(sw)dw. (1.36) 

where $(r,p) satisfies the following Fredholm integral equation 

$(r,p)+ f $(u,p)L(r,u,p)du = H{r), (1.37) 
J U 

with symmetrical kernel 

L(r,u,p) = (ru)l/2 j   w[F(w,p) - l] J0(rw)J0(uw)dw, (1.38) 
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and free term 

H(r) = —Z~        / 2       2dw- h39 
q    Jo  y/r2 -w2 

For the case of concentrated loads as illustrated in figure 1.1, we have a(x) = a-5(x-x0) 

where the denominator appears due to the normalization of x, the free term becomes 

f -£ß=   for   x0 < r 
H(r) = {   V^l (1.40) 

[ 0 for   x0 > r. 

Note that the free term is discontinuous in r. Integrating D(s,p) by parts in equation 

(1.36) gives 

D(s'?)=~^kfs {*^JM -1! ™j>(™)£ K2*M *«}.   (i.4i) 
From equation (1.27) we know that in the Laplace transform domain a*   is 

yy 

roo 
^y(^>0,p) = //12f /    s F(s,p) D(s,p)cos(sx)ds. 

J 0 

and substituting (1.41) it is found that 

°yy{x,0,p)   =   —— uy ira 
 '— /    F(s,p)Ji(s) cos(sx)ds 

p     Jo 
n      (   roo /-l ^ "j 

-—{]    F(s,p)cos(sx)ds I   wJ1(sw)—[w-1/2$(w,p)]dwUlA2) 

As shown by Kassir and Bandyopadhyay (1983) the stress intensity factor extracted 

from (1.42) is 

where £_1 denotes the inverse of the Laplace transform. 

1.4    A superposition problem 

The problem of a finite crack with a single pair of impact concentrated loads (figure 1.2(a)) 

may be solved. As illustrated in figure 1.2, this problem can be treated by a superposition 

of the two problems shown, that is, one with a symmetric (figure 1.2(b)) and the other 

with an antisymmetric (figure 1.2(c)) displacement field.   The symmetric part is just the 
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problem solved above with a load of magnitude q/2 instead of q. To solve the antisymmetric 

part we follow a similar procedure. Application of Laplace and Fourier transforms leads to 

a reduction of the governing equations to a system of dual integral equation. The stress 

intensity factor in the Laplace domain is obtained for each problem, and then they are 

superimposed in this domain. Finally the Laplace inversion is performed on the sum to 

obtain Kj{t) for the original problem. For the symmetric part (figure 1.2(b)), the stress 

intensity factor Kis(t) is given by equation (1.43) with a correction in the load magnitude 

*,.(«)=«£-'{•&£>}. (1.44) 

1.4.1    Antisymmetric loading 

To obtain a solution of the differential equations (1.10) and (1.11) subject to conditions 

(1.12) for the antisymmetric case, let 

roo 

u*(x,y,p)   =    /    A(s,y,p)cos(sx)ds, (1.45) 
J{j 

roo 

v*(x,y,p)   =   -       B{s,y,p)sin(sx)ds, (1.46) 

where A and B are the Fourier cosine and sine transforms of the Laplace transform of the 

displacements, and are yet to be determined. Substituting these transforms into equations 

(1.10) and (1.11), the functions A and B are found to satisfy the simultaneous ordinary 

differential equations (1.15) and (1.16), therefore the variables atj are given by (1.18) and 

7j by the solution of (1.19). The expressions for the displacements in the Laplace plane 

become: 

roo 

u*   = (Aie-
liy + A2e~™) cos{sx)ds, (1.47) 

*f 0 

v*   =   - r(aiA1e-™ + a2A2e-™)S-^^-ds, (1.48) 
*/o s 

and using (1.7) the corresponding expression for r*y is given by 

roo 

<y = -A*i2 /    [(«i + TiMie-™ + (a2 + j2)A2e-™] cos(sx)ds. (1.49) 
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Applying the second condition of (1.12) to equation (1.49) yields 

A2(s,p)   =   -ßAi(s,p), 

ß   =   24*. (1.50) 
«2+72 

Therefore the expressions for the transformed components of displacement become 

/•CO 

u*(x,y,p)   =    /   {e~™ - ße-^y)A1{s,p)cos(sx)ds, (1.51) 
J 0 

v*(x,y,p)   =   - n(aie-™ - ßa2e-™)Al(S,p} sm{sx)ds, (1.52) 
J 0 s 

and the associated stress components are given by 

<   =   -/iia /°°[(cns2 - axllcl2)e-™ - {cns2 - a272ci2)/?e-™]^^ sin(az)<&.53) 
J 0 5 

Oy   =   -/ii2 /°°[(ci2S2 - al7lc22)e-™ - (c12s
2 - a272c22)/3e-™]^^- sin(sx)c(ä,.54) 

roo 

<y   =   -M12 yo   (ai+7i)[e"7iy-e-^]^1(s,p)cos(sa:)ds. (1.55) 

Introducing the function 

E(s,p)   =   -(al-ßa2)Al(s,p), (1.56) 
s 

and in view of the first and third boundary conditions in (1.12), equation (1.52) and (1.54) 

yield the following pair of dual integral equations for the determination of the function E(s,p) 

/•oo o[x) 
/    s F(s,p) E(s,p)sin(sx)ds   =   —^-       0 < x < 1, (1.57) 

JO fJ-\2^P 
yoo 
/    E(s,p)sin(sx)ds   =   0       x > 1. (1.58) 

Following the procedure given by Sneddon (1966), the function E(s,p) of the original 

integral equations (1.58) and (1.57) can be found in terms of another unknown function, 

ty(r,p), in the form 

E(s,p) = ?—— f w1/2<if(w,p)J1(sw)dw. (1.59) 
ira[j,i2£p Jo 

where ^(r,p) satisfies the following Fredholm integral equation 

V(r,p)+ f V(u,p)M{r,u,p)du = R(r), (1.60) 
J 0 
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with symmetrical kernel 

M(r,u,p) = {ru)1/2 I   w[F(w,p) - l] Jx(rw)Ji{uw)dw, (1.61) 

and free term 
„, ,       2a    r    a(w)     , 

For the case of concentrated loads of magnitude q, we have a(x) = a-5(x — Xo), such that 

the free term becomes 
2xp for   x0 < r 

R(r) = {   *>/*=%   t (1.63) 
[ U tor    x0 > r 

Integrating E(s,p) by parts, equation (1.59), gives 

EM ' -^kfs {»P-rtAW - I! J'^i [»"»«M *»} • (1.64) 
From equation (1.54) we know that in the Laplace transform domain cr*   is 

/•oo 

<rly(x,0,P) = -Atwf /    s F(s,p) E(s,p)sm(sx)ds. 
JO 

and inserting (1.64) it is found that 

v'yyMp)   =   —   ^^ rF(s,p)J0(s)sm(sx)ds yy %a [    p     Jo 

—— \ [°°F(s>P)sin(sx)ds [ Msw)—[w1/2^(w,p)]dw\. (1.65) 

and the stress intensity factor extracted from (1.65) for a load of magnitude q/2 is 

™-&*>{*¥}- <««> 
Therefore the stress intensity factor of the original problem (figure 1.2(a)) in the time 

domain is given by the sum of the symmetric contribution (1.44) and the antisymmetric part 

(1.66), that is 

Kj(t)   =   KIs(t) + KIa(t) 

Ki(t) __ ^{•MgM}. (x,7) 
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1.5    Numerical Results 

The Fredholm integral equation, (1.37), was solved numerically using the Nystrom method 

(Atkinson 1997) to find $(r,p). The values of $(l,p) were then extracted. This method 

requires the application of an approximate quadrature rule to the Fredholm integral equation 

(1.37) and then the evaluation of the resulting equation at the quadrature points r* to get 

N 

$(ri,p) + Y,™jL{ri,uj,p)${ui,p) = H(r{) (1.68) 

where Wj are the weights of the quadrature rule, while the N points r* are the abscissas. 

This is a set of N linear algebraic equations in N unknowns. For this problem N = 200 

quadrature points were selected in order to get good accuracy and the trapezoidal quadrature 

rule was chosen because of the complex behavior of $ and the discontinuous nature of the 

free term H. 

Numerical inversion of the Laplace transform was performed using inverse fast Fourier 

transform to find Kj{t) according to equation (1.43). From the definition of the Laplace 

transform (1.9) it is seen (Papoulis 1962) that to every function f(t), a real constant 7 

can be associated such that f*(p) converges for Re(p) > 7, with p considered a complex 

variable. Thus the region of existence of (1.9) is the half plane to the right of the vertical 

line Re(p) = 7. If the region of convergence of f*(p) contains the iw axis in its interior, i.e., 

if 7 < 0, then the Fourier transform 

F(w) = /    e-iwtf(t) dt 
Jo 

is a special case of the Laplace transform (1.9) with p = iw, thus F(w) is given by 

F(w) = f*(iw). 

At this point the fast Fourier transform algorithm may be used to find /(£). In equation 

(1.43) we remove the singularity at p = 0 performing the Laplace transform inversion 

Kj(t)' = -^C-1 { -lif^ K—LJL- (1.69) 
V7TO { P 
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Orthotropic 
material 

Isotropie 
material 

Ei   (GPa) 156.75 200 
E2  (GPa) 10.41 199.8 

^12 0.31 0.3 
^23 0.49 0.3 

/ii2  (GPa) 7.07 76.92 
P  (Kg/m3) 1580 7840 

Table 1.1: Mechanical properties used for the analysis. 

such that the Laplace transform exists for 7 < 0 and we can relate it with the Fourier 

transform. Then we find Kj{t) = Ki(t)' + if/(oo). Equation (1.69) comes from the final 

value theorem for the Laplace transform (Debnath 1995) which states that if Ki{t) is given 

by (1.43) then 

KAoo) = lim KAt) = lim-£=$(l,p). 

The numerical results presented correspond to isotropic and orthotropic cases. Prop- 

erties of transversely isotropic materials (a typical graphite-epoxy composite) with fibers 

parallel and perpendicular to the x axis are considered in the second case. These properties 

are given in table 1.1. 

Figure 1.3 shows the stress intensity factor history for short and long times for an 

isotropic material in plane stress with concentrated loads located at x0 — 0.6. Note that 

the isotropic material is a degenerate case of the governing equations (1.3) and (1.4). For 

the isotropic material cu = c22 = jz^ and ci2 = ^. Hence 71 = 72 for p = 0 leading 

to ß = 1 and F(s,p) not defined. Consequently, the isotropic case presented here was 

obtained from the orthotropic formulation letting Ei = E, E2 = (1 — e)E, */12 = u23 — u and 

/Z12 = (üq + ^2)7(4(1 -I- v)) where E and u correspond to the isotropic properties and e is a 

small quantity with e << 1. In figure 1.3(a) where the stress intensity factor for short times 

is displayed, good comparison with the solution given by Freund (1974) for one semi-infinite 

crack with line loads is seen. For normalized times t < cs(l + x0)/cci(l-xo) = 2.13 the finite 

crack problem has the same dynamic stress intensity factor as that of semi-infinite crack 
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Finite Crack with Concentrated Loads at x0=0.6, Isotropie Material Finite Crack with Concentrated Loads at xQ=0.6, Isotropie Material 

X 0.5 - 
5? 

' r™  1 1  

      Finite crack 
        Semi-infinite crack 

A A    Quasi-static solution 

  - 

 J..   . . 1                 • » 
c t/ah-xj 

(a) (b) 

Figure 1.3: Stress intensity factor history for a finite crack with two pairs of concentrated 
loads in isotropic material. The normalization factor is K0 = qJ2/-Ka{\ — x0). (a) Compar- 
ison of results for short times with Freund's (1974) exact solution for a semi-infinite crack 
in isotropic material, (b) For long times. 

problem because the dilatational wave generated by the loads located at x = -x0 has not 

arrived at the crack tip under consideration at x = +1 (see figure 1.1). The results shown 

in the figure 1.3(a) reflect this agreement. Note that the stress intensity factor is indeed 

discontinuous and that the numerical inversion technique captures the discontinuity quite 

well. It is worth noting that the presence of the singularity of Ki(t) when the Rayleigh 

wave arrives is also captured in the numerical results. The singularity in Kj(t) at t = 1.078 

is similar to that found in the surface displacements in the calculated solution of Lamb's 

problem, where a concentrated load is applied on a half-space (Achenbach 1973). 

The oscillations observed near the discontinuity in Ki{t) are due to the convergence of 

the method employed to invert the Laplace transform. These oscillations are quite similar 

to Gibb's phenomenon as seen in the Fourier transform or Fourier series representation of a 

discontinuous function (Papoulis 1962). 

After the arrival of the dilatational wave generated by the load at x = -x0 the exact 

solution given by Freund is no longer valid. However, as seen in figure 1.3(b) the numerical 
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solution shows no appreciable change in Kj(t) until the Rayleigh wave generated by the load 

at x = — xQ arrives. At this time another discontinuity in Kj{t) similar to that observed 

when the first Rayleigh wave arrived is observed. After that, several singularities are seen 

due to Rayleigh waves reflected from the crack tips. Eventually, these reflections die out 

and at t = 15, Ki(t) reaches the quasi-static value given in equation (1.1). Disregarding the 

singularities, a dynamic overshoot of 36% is seen. 

The results for x0 ^ 0.6 are quite similar. However, if x0 is very close to 1, then numerical 

difficulties arise in the solution of the Fredholm equation. Due the discontinuity in the free 

term H(r) in (1.40), the discrete representation Hfc) in equation (1.68) would be a vector 

with almost only zeros for x0 -> 1~. Consequently, more quadrature points are needed. 

Finite Crack with Concentrated Loads at x =0.6, Orthotropic Material Finite Crack with Concentrated Loads at x0=0.6, Orthotropic Material 

~   0 5 

      Finite crack 
* &    Quasi-static solution 

1                    1 1               1               1 

       Finite crack 
& ^    Quasi-static solution 

- 

p 
1               t               1 

V/a<1-xo> ctT/a(1-Xo) 

(a) (b) 

Figure 1.4: Stress intensity factor history for a finite crack with two pairs of concentrated 
loads in orthotropic material. The normalization factor is K0 = qJ2/ira(l — x0). The 
material properties correspond to a graphite-epoxy composite with the fibers parallel to the 
x axis, (a) For short times, (b) For long times. 

Figure 1.4 shows the result for the orthotropic material in plane stress with concentrated 

loads also at x0 = 0.6. Similar behavior to that shown in figure 1.3 for an isotropic material is 

seen. That is, -Kj(i) is initialy zero until the arrival of the dilatational wave. Then it becomes 

slightly negative before a singularity and a sudden discontinuous change is observed when 
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the Rayleigh wave arrives at the crack tip. It is also observed that another discontinuity 

occurs when the Rayleigh wave caused by the line loads at x = — x0 arrives at the crack tip, 

the second Rayleigh wave results in another singularity and jump in Ki(t). For long times 

the stress intensity factor reaches the quasi-static value as expected. The results shown 

in figure 1.4 correspond to a graphite-epoxy composite with mechanical properties shown 

in table 1.1. Figure 1.4 shows Kj{t) for the case when the fibers are oriented parallel to 

the x axis. For wave propagation along the material principal axes wave pure modes are 

obtained (Nayfeh 1995), i.e., the polarization vector is directed either along or normal to the 

propagation direction. For wave propagation along the x axis of the composite mentioned 

above, the speed of the dilatational and shear waves are Q = 10,086m/s and cs = 2,115m/s, 

respectively. Surface or Rayleigh waves in this case are found to propagate at a velocity of 

cR = 2090m/s (Nayfeh 1995). 

For isotropic materials, Ki{t) has a singularity at the time when the Rayleigh wave 

arrives, figure 1.3, this occurs between t=l and £=1.078 for the properties shown in table 

1.1; these normalized times correspond to the arrival of the shear and Rayleigh waves re- 

spectively. In figure 1.4, the orthotropic case, the arrival times are t=\ and £=1.012, that is, 

the singularity occurs in a shorter time interval, but even in this case the numerical solution 

is capable of predicting the singularity. It has been shown (Kraut 1963) that in the Lamb's 

problem for transversely isotropic materials there is also a singularity in the vertical dis- 

placements. Hence, a singularity in Ki(t) is expected. Note that the numerical solution also 

predicts reflected pulses, i.e., the two peaks observed at t=6.06 and t=9.1 in figure 1.4(b), 

corresponding to the arrival at x = +1 of Rayleigh waves reflected by the tip x = -1. 

Figure 1.5 illustrates the dynamic stress intensity factor Ki(t) for the same composite 

material in plane stress with fibers parallel to y axis. A similar behavior is observed with 

respect to that of figure 1.4 where the composite has fibers parallel to x axis. In fact all 

three figures are quite similar. The magnitude of the jumps in the stress intensity factor 

are independent of the material constants cn, c12 and C22, as expected. Furthermore, since 
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dilatational waves have little effect on Ki{t), the ratio of the Rayleigh wave speed to the 

shear wave speed, CR/CS, determines most of the behavior of Kj(t) including the time of the 

singularities and jumps. This explains why the plots in figures 1.3, 1.4 and 1.5 are so similar 

even though they correspond to very different materials. Each has a very similar CR/CS ratio. 

In fact this ratio does not change dramatically for a wide range of materials. 

Rnite Crack with Concentrated Loads at x =0.6, Orthotropic Material Ey>Ex Finite Crack with Concentrated Loads at x =0.6, Orthotropic Material Ey>Ex 

t  r i ■    i 

      Rnite crack 
A &    Quasi-static solution 

■■•■ 

_"N 
1 

x/af 

-««I Second Raytoigti w 

1-x0) 

(a) (b) 

Figure 1.5: Stress intensity factor history for a finite crack with two pairs of concentrated 
loads in orthotropic material. The normalization factor is K0 = qy 2/7ra(l — x0). The 
material properties correspond to a graphite-epoxy composite with the fibers perpendicular 
to the x axis, (a) For short times, (b) For long times. 

1.5.1    Superposition problem 

For the problem of a single pair of concentrated loads, figure 1.2(a), inversion of the Laplace 

transform was performed using inverse fast Fourier transform to find Kj{t) according to 

equation (1.67). The function \P(l,p) is evaluated numerically with the same procedure as 

$(l,p) of the first problem. The numerical results presented correspond to the orthotropic 

case. Properties of transversely isotropic materials with fibers parallel and perpendicular to 

the x axis, table 1.1, are considered. Figure 1.6 shows the results. The arrival at x = +1 

of the Rayleigh wave causes a singularity and a jump in Kj(t) . Thereafter the plateau is 

maintained until the reflected Rayleigh wave from the tip x = — 1 arrives at the tip x = +1. 
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The later behavior is a relatively smooth decreasing of Ki(t) to reach the quasi-static value 

in equation (1.2). The dynamic overshoot is minimal at 5%. 

Finite Crack with Concentrated Loads at x0=0.6, Orthotropic Material Finite Crack with Concentrated Loads at x^O.6, Orthotropic Material Ey>Ex 

      Finite crack 
A &    Quasi-static solution 
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Figure 1.6: Stress intensity factor history at x = +1 for a finite crack with a single pair of 
concentrated loads in orthotropic material, a) fibers parallel to x-axis, b) fibers parallel to 
y—axis. 

1.6    Conclusions 

The stress intensity factor history K^t) has been determined for finite cracks in orthotropic 

materials subjected to impact concentrated loads. The singularities and discontinuities as- 

sociated with the arrivals of stress waves have been predicted in the solution. The dynamic 

response of the crack has been analyzed until K[(t) reaches the quasi-static value. The limit- 

ing isotropic case in the orthotropic formulation agrees well with the exact solution available 

for isotropic material within that solution's period of validity. The overall time evolution of 

if/(i) is similar in isotropic and orthotropic materials. In fact, figures 1.3, 1.4 and 1.5 are 

very similar. This is due to several effects: 

1. The values of Ki{t) at the plateaus are independent of cn, c22 and ci2. 

2. Crack face displacements due to cd are small and have little effect on the results. 
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3. The ratio of the Rayleigh wave speed to the shear wave speed varies little for each case, 

cR/cs = 0.925 for the isotropic and CR/CS = 0.988 for the orthotropic materials ana- 

lyzed. Consequently, the singularities and jumps in Ki(t) occur at similar normalized 

times. Many composite materials have CR/CS very near 1. Hence it is not expected 

that Kj(t) would change for most other materials. 

Finite Crack, Isotropic Material, Uniform Load Finite Crack, Orthotropic Material, Uniform Load 

(a) (b) 

Figure 1.7: Finite crack with uniform impact load, comparison of results. (a)Isotropic ma- 
terial, Freund's solution is exact, (b) Orthotropic material. The normalization factor is 
K0 = crov/7rä. 

Several other problems have been solved in the literature using integral transform meth- 

ods as mentioned in the introduction, however it seems from those studies that the accuracy 

of the method was weak. With the appropriate numerical methods to solve the Fredholm 

integral equation and to perform the Laplace inversion, it has been shown here that excellent 

results may be found. Figure 1.7 shows the stress intensity factor for a finite crack with uni- 

form impact load in isotropic and orthotropic materials respectively. These problems were 

solved for the isotropic case by Chen and Sih (1979) using the method used here and by 

Freund (1990) using a superposition of solutions and the Weiner-Hopf Technique, and for 

the orthotropic case by Kassir and Bandyopadhyay (1983) using the method used here. The 

figure shows their results and those obtained using the FFT algorithm for the Laplace inver- 
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sion. Note that in the isotropic case, figure 1.7(a), a better approximation may be obtained 

using the FFT for the Laplace inversion as compared with Freund's solution which is exact 

for t < Acjcd- In the orthotropic case, figure 1.7(b), although there is no exact solution, 

we know that there should be a peak when a Rayleigh wave arrives from tip x = —1 at tip 

x = +1 and this behavior is well described in our solution. The dynamic overshoot in 1.7(b) 

is larger, 30% vs. 20%. In both cases, after reaching the maximum, the stress intensity 

factor decays to the quasi-static value without many oscillations as was previously claimed 

(Chen and Sih 1977). 
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Chapter 2 

Response of Finite Cracks in 
Orthotropic Materials due to 
Concentrated Impact Shear Loads 

Co-authored with C. Rubio-Gonzalez and submitted to ASME Journal of Applied Mechanics 

Abstract 

The elastodynamic response of an infinite orthotropic material with a finite crack under 

concentrated in-plane shear loads is examined. Solution for the stress intensity factor his- 

tory around the crack tips is found. Laplace and Fourier transforms are employed to solve 

the equations of motion leading to a Fredholm integral equation on the Laplace transform 

domain. The dynamic stress intensity factor history can be computed by numerical Laplace 

transform inversion of the solution of the Fredholm equation. Numerical values of the dy- 

namic stress intensity factor history for several example materials are obtained. The results 

differ from mode I in that there is heavy dependence upon the material constants. This 

solution can be used as a Green's function to solve dynamic problems involving finite cracks 

and in-plane shear loading. 
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2.1    Introduction 

The use of composite materials is becoming more common in many engineering applications. 

The dynamic behavior of cracked bodies in such materials is a subject of many theoretical 

and experimental works. Both stationary and propagating cracks under dynamic loads in 

isotropic materials have been analyzed extensively (Freund 1990, Parton and Boriskovsky 

1989, Chen and Sih 1977). However, for orthotropic materials the available solutions are 

few (Kassir and Bandyopadhyay 1983, Shindo and Nozaki 1991, Rubio-Gonzalez and Mason 

1998), this is due in part, to the mathematical complexity of such problems. Recently Rubio- 

Gonzalez and Mason (1998) presented the solution for a finite crack in orthotropic materials 

subjected to concentrated impact loads in mode I. Their solution was able to predict the 

singularities and discontinuities in the stress intensity factor history associated with the 

arrival of shear, dilatational and Rayleigh stress waves at the crack tips. One conclusion of 

that work is that crack face displacements due to the dilatational wave are small and have 

little effect on the results. Thus the ratio of the Rayleigh wave speed to the shear wave speed, 

cR/cs, determines most of the behavior of Ki{t) including the time of the singularities and 

jumps in this function. However, as will be seen here, the behavior for in-plane shear loading 

is very different. The arrival of the dilatational wave at the crack tip causes a jump in Kn(t) 

which is significant in the overall shape of the stress intensity factor history, especially for 

fiber-reinforced composites with fibers aligned with the plane of the crack. 

Shear loading of cracks in composite systems is drawing the attention of investigators 

as an important factor in dynamic failure of composites and debonding of bimaterials. The 

theoretical analysis of Liu, et al. (1995) predicts that the near-tip deformation field for tran- 

sonic interfacial crack growth is predominantly of a shear nature. Experimental observations 

of Lambros and Rosakis (1995) and Shukla et al. (1998) support that prediction. Lambros 

and Rosakis (1995) were able to measure cracks propagating at 1.5 times the lower Rayleigh 

wave speed of the constituents in a bimaterial plate. More recent work by Rosakis and 

co-workers (1998) has demonstrated that shear loaded stationary cracks in unidirectional 
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composites can accelerate to supersonic speeds, speeds above the Rayleigh wave speed for 

that material and orientation. Finally in quasi-static tests, shear dominated loading can 

often lead to unstable crack growth (Shivakumar and Crews 1998). Consequently, it seems 

that dynamic shear loading of cracks may be of primary importance in the impact failure of 

composites. 

In the present work, the problem of an infinite orthotropic body with a finite crack 

subjected to suddenly applied shear line loads on its faces is examined. The crack lies on 

the principal axes of the material. The Green's function presented here, the solution related 

to the geometry shown schematically in Figure 2.1, has not been reported to date although 

the quasi-static solution is presented by Isida (1972) as 

where Xo, 9 and a are defined in the figure. The quasi-static solution for tangent opposite 

loads on a semi-infinite crack will be used as a normalization parameter in this study, however, 

and it is given by 

K0 = q\hr^ r- (2-2) 
V n(a - xo) 

It is worth noting that, while the dynamic stress intensity factor for normal opposite line 

loads on a semi-infinite crack has been published for isotropic materials (Freund 1974), it 

appears that the dynamic stress intensity factor for tangent opposite line loads in semi- 

infinite cracks is not available. However, a solution for tangent line loads pointing in the 

same direction on semi-infinite cracks is given by Abou-Sayed et al (1980). 

Integral transform methods are usually the techniques employed to solve problems in- 

volving cracked orthotropic bodies subjected to impact loads (Kassir and Bandyopadhyay 

1983, Shindo and Nozaki 1991). This approach leads to a Fredholm integral equation on the 

Laplace transform domain, rather than a Weiner-Hopf equation (Freund 1990) as is found 

for isotropic materials. The dynamic stress intensity factor on the time domain is recovered, 

in the most difficult step of the analysis, by numerical inversion of the solution of the Fred- 

holm equation. This process can be numerically challenging and computationally intensive. 
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Figure 2.1: Schematic of the finite crack geometry with concentrated shear loads. 

Rubio-Gonzalez and Mason (1998) have shown that with the appropriate numerical methods 

to solve the Fredholm integral equation and to perform the Laplace inversion, excellent re- 

sults may be found in the solution of dynamic crack problems by integral transform methods. 

In this work the method of Honig and Hirdes (1984) is used for the inversion of the Laplace 

transform. 

2.2    Governing Equations 

Consider the plane problem of an infinite orthotropic medium containing a finite crack, 

Figure 2.1. Let Eiy p^ and z^- (i, j = 1,2,3) be the engineering elastic constants of the 

material where the indices 1, 2, and 3 correspond to the directions (x,??, Z) of a system of 

Cartesian coordinates chosen to coincide with the axes of material orthotropy. The crack 

plane is 77 = 0 and the origin of the XV axes is the mid-point of the distance between the crack 

tips. The normalized coordinates x = xla and y = v/a are introduced such that the crack 

tips are located at x = ±1 and the loads at x = ±x0. The normalized time t is introduced 

in the form t = csr/a where cs = Jpn/p with p being the mass density. Concentrated shear 

forces of magnitude q are applied as shown. 

The problem under consideration is restricted to two dimensions with wave propagation 

in the x — y plane only. By setting all the derivatives with respect to z to be zero, it is 

readily shown that the displacement equations of motion (Nayfeh 1995) in the normalized 
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coordinates reduce to 

d2u     d2u     ., , d2v d2u 
CnoV2 + d^ + {1 + Cl2)dx^y-   =   W> (2-3) 

d2v d2v     . . d2u d2v ,    . 

dx-2+C22dV2 + { l + Cn)d-xTy = W {2A) 

where u and v are the x and y components of the normalized displacement vector and cn, 

Cyi and c22 are non-dimensional parameters related to the elastic constants by the relations: 

Cll 
/i12[l - (E2/E1)u: ?2]' 

c22   =   (E2/Ex)cxx, (2.5) 

Cl2     =    ^12C22 = ^21 Cn, 

for generalized plane stress, and by 

Cn     =      x(1 ~ l/23l/32), 
Ml2^ 

C22     =     ^(l~^3l)' 

Cl2     =      x(^21 + ^T^13^32), (2.6) 
/ii2A Ü1 

A     =     1 - ^12^21 - ^23^32 -^31^13 - ^12^23^31 -^13^21^32, 

for plane strain. In the orthotropic solid, cs represents the velocity of the in-plane shear 

wave propagating along the the principal material axes. The stresses are related to the 

displacements by the equations: 

Ml2 

du         dv 
~    Cllö_ + C12^_. dx         dy 

A*12 

du         dv 
=   C12-5—1-022-5-, 

dx          dy 
Txy du     dv 

(2.7) 

)Ui2 dy ' dx' 

The corresponding boundary conditions are 

ay(x,0, t)   =   0   for    \x\ < 00, 

Txy(x,0,t)   =   -r(x)H(t)       for    \x\ < 1, (2.8) 

I u(x,0,t)   =   0       for    |x| > 1, 
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in addition to the condition of zero displacements at infinity and zero initial conditions. The 

traction T(X) is a known function of x and H(t) is the Heaviside step function. 

Equations (2.3), (2.4) and (2.8) constitute a mathematical statement of the problem. 

For the moment r(x) represents a general load on the crack faces, later it will be substituted 

by a function representing the line loads. 

2.3    Method of Solution 

The method of solution of the governing equations presented here follows that of Kassir and 

Bandyopadhyay (1983) and Sneddon (1966). In equations (2.3) and (2.4), the time variable 

may be removed by application of the Laplace transform 

r°° 1     f 
/* (p) = /    /(*) e"p< dt,    f(t) = — /   rip) e* dt, (2.9) 

JO l~Kl JBr 

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary 

axis in the p-plane. Applying relations (2.9) to equations (2.3) and (2.4) and assuming 

zero initial conditions for the displacements and velocities, the transformed field equations 

become 

d2u*     d2u*     ,„ ,dV       2 , n .„,„. 
c"-e^ + W + (1 + Cn)äiä-y-pu   = °' (210) 

av      av   ,.      ,av    . .      „ ,„„. 
ä?+*8^ + (1+Ca)Sä»-^ = °- (2-u) 

where the transformed displacement components, u* and v*, are now functions of the vari- 

ables x, y, and p. The application of the Laplace transform to the boundary conditions (2.8) 

gives • 

a*(x,0,t)   =   0   for    \x\ < oo, 

r^(a;,0,0   =   -r{x)/p       for   0 < |x| < 1, (2.12) 

u*(x,0,t)   =   0       for    |x| > 1. 
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To obtain a solution of the differential equations (2.10) and (2.11) subject to conditions 

(2.12), we exploit the symmetry of the problem by letting 

roo 
u*(x,y,p)   =    /    A(s,y,p)cos(sx)ds, (2.13) 

roo 

v*(x,y,p)   =   -/    B(s,y,p)sin(sx)ds, (2.14) 
*f 0 

where A and B are the Fourier cosine and sine transforms of the Laplace transform of the 

displacements, u* and v*, respectively, and are yet to be determined. Substituting these 

transforms into equations (2.10) and (2.11), the functions A and B are found to satisfy the 

simultaneous ordinary differential equations 

(cnS2+p2)A-— + (l + cn)s—   =   0, (2.15) 

/ 7      9,n d2B ,  dA , 
(s2+p2)B-c22—-(l + cl2)s—   =   0. (2.16) 

The solution of these equations which vanishes for \y\ —> oo is 

A(s,y,p)   =   A1(s,p)e-™ + A2{s,p)e-™, 

B(s,y,p)   =   ^(s.pJe-^ + ^^e-™ (2.17) 

where Ai and A2 are arbitrary functions and aj(s,p) stands for the functions 

Ci i S    ~\~ V   — 'Y ■ 

M'.P)=    (1 + c12)y,   '   i = h2 (218) 

with 7^ and 7I being two distinct roots of the quadratic equation 

C2274 + [(4 + 2c12 - cnc22)s
2 - (1 + c22)p

2]7
2 + (cns2 +p2)(s2 +p2) = 0. (2.19) 

It can be shown that for many materials the roots 71 and 72 are real and positive and the 

expressions for the displacements in the Laplace transform domain become: 

TOO 

u*   =    /   (Aie-™ + A2e~™) cos(sx)ds, (2.20) 
Jo 

=   -/°°(a1/l1e-
1'1J' + a2^2e-^)^^ds, (2.21) 

J 0 & 
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and using (2.7) the corresponding expression for a* is given by 

°*y = -/xi2 /°°[(ci2s
2 - ewc^ie-™ + (c12s

2 - a2l2c22)A2e-^]S-^^-ds.       (2.22) 
JO 5 

Applying the first condition of (2.12) to equation (2.22) yields 

Ms,p)   =   -ßAi{s,p), 

ß   =   Cl2S'"C22"171. (2.23) 
C\2Sl - c22a2-y2 

Therefore the expressions for the transformed components of displacement become 

roo 

u*(x,y,p)   =    /   (e"™ - ße-^y)A1(s,p)cos(sx)ds, (2.24) 

v*(x,y,p)   =   - r^e-™ - ßa2e~™) A^s^ sm(sx)ds, (2.25) 
Jo s 

and the associated stress components are given by 

<   =   -Pi* /°°[(ciis2 - ai7ici2)e-™ - (cns2 - a272c12)/fcr™]^^ sin (sx)c<$. 26) 
Jo s 

o*y   =   -ßn Ticns2 -aaic22)(e~™ -e-™)^^sm(sx)ds, (2.27) 
roo 

T*xy   =   Pn       [-(a1+-fl)e-^
y + ß{a2 + j2)e-^

y)A1(S,p)cos(sx)ds. (2.28) 
•'0 

Introducing the functions 

S(s,p)   =   (l-ß)A1{s,p), (2.29) 

G{sp)   =   -{ai+^ß^2 + J^ (23o) 

V   =   c22NlN2(l + L)(^ + Na)«4 + c- - CnC22)(c12NlN2 - cn) 

-cz2[ci2N*Nl + cn(iV? + A^iV, + JV2
2)]}, (2.31) 

W2
2   =   ^{cnc22 - c2

2 - 2c12 ± [(cnc22 - c2
2 - 2c12)

2 - Acuc22]1/2},     (2.32) 

and in view of the second and third boundary conditions in (2.12), equation (2.24) and (2.28) 

yield the following pair of dual integral equations for the determination of the function S(s,p) 

roo T{X) 
/    s G(s,p) S(s,p)cos(sx)ds   = y—L       0 < x < 1, (2.33) 

Jo ßnVP 
roo 

/    S(s,p)cos(sx)ds   =   0       x > 1, (2.34) 
Jo 
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where r(x) is the distributed load along the crack faces. The constant rj in (2.30) has been 

chosen such that for large s, the function G(s,p) becomes 

G(s,p) = l + 0(l/s) 

Using cos(sx) = J^J^x^sx) and defining S(s,p) = s1/2S(s,p) andri(s,p) = G(s,p)— 

1, these last equations can be written as 

roo _ 
/    s[ri(s,p) + l]S(s,p)J-i/2(sx)ds   =   g(x)       0 < x < 1, 

roo  _ 
/     S(s,p)J-i/2(sx)ds   =   0        X > 1, 

where 

•<"-S- (2-35) 
Following the procedure given by Sneddon (1966), the function S(s,p) of the original 

integral equations (2.34) and (2.33) can be found in terms of another unknown function, 

0(r, p), in the form 

S(s,p) =  / w1/20(w,p)J0(sw)dw. (2.36) 
iraßi27]p Jo 

where Q(r,p) satisfies the following Fredholm integral equation 

e{r,p)+ f1e{u,p)K(r,u,p)du = H(r), (2.37) 
Jo 

with symmetrical kernel 

K(r,u,p) = (ru)1/2 [°°w[G(w,p) - l] J0(rw)J0(uw)dw, (2.38) 

a    Jo  \lrl — wz 

and free term 
2oi/F r    T(W) 

q    Jo  \Jr2 — vfi- 

For the case of concentrated loads as illustrated in figure 2.1, we have T(X) = a-S(x—Xo) where 

the denominator appears due to the normalization of x, such that the free term becomes 

H(r) = {   7^k   f°r   X°<r (2.40) 
0 for   xo > T. 
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Note that the free term is discontinuous in r. Integrating S(s,p) by parts in equation (2.36), 

gives 

S(s,p) = q— {Q{1,P)JX{S) - llwJx{sw)j- \w-V2e(w,p)} dw) . (2.41) 
■Kdßurips { Jo aw L J 

From equation (2.28) we know that in the Laplace transform domain r*y is 

/■oo 

T*y(x,0,p) = nuV /    * G(s,p) S(s,p)cos(sx)ds. 

and substituting (2.41) it is found that 

r^,(x,0,p)   =   —— 
7TO 
 — /    G(s,p)Ji(s)cos(sx)ds 

—— \ f°° G(S'P) cos(sx)ds [ wJi(sw)— [w-l/20(w,p)]dw 1(2.42) 

As stated by Kassir and Bandyopadhyay (1983) the stress intensity factor extracted 

from (2.42) is 

« = ff'(?M}, (2.43) 0TÖ {       p        J 

where £_1 denotes the inverse of the Laplace transform. 

2.4    Numerical Results 

2.4.1     Quasi-static solution 

We can show that the dynamic formulation is consistent with the quasi-static solution; that 

is, we recover equation (2.1) exactly when t —> 00. To do this we invoke the final value 

theorem for Laplace transforms, (Debnath 1995) which states that if Kji(t) is given by 

(2.43) then 

Kn{oo) = Mm Kn{t) = lim-|=e(l,p). 

Noting that by construction G(s,p) -> 1 when p —>• 0, therefore the kernel, equation (2.38), 

vanishes and equation (2.37) gives Q(r,p) = H(r) for p ->• 0, in particular 0(1,p) = H(l), 
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and hence 

Kn(oo) = 
2a 

^ Xl 

which is exactly the expression (2.1). In the plots to follow, figures 2.2-2.5, it can be shown 

by careful numerical Laplace transform inversion that the results decay to the quasi-static 

solution as t -> oo. For that reason interest is focused on the early time, transient response. 

Finite Crack, shear loads, JC^O.6, Isotropie material 

V/(a5(1-Xo)? 

Figure 2.2: Stress intensity factor history for a finite crack with concentrated shear loads 
in isotropic material. The normalization factor is given by the equation (2.2). The labels 
Pi, Si and Ri correspond to the arrival at the crack tip x = +1 of the dilatational, shear 
and Rayleigh waves at the crack tip x = +1 generated by the load at x = +x0, respectively. 
Similarly, P2, S2 and R2 correspond to the arrival of the dilatational, shear and Rayleigh 
waves at the crack tip x = +1 as generated by the load at x = —x0. 

2.4.2    Transient response 

The Fredholm integral equation, (2.37), was solved numerically using the Nystrom method 

(Atkinson 1997) to find 0(r,p). The values of 6(1,p) were then extracted. This method 

requires the application of an approximate quadrature rule to the Fredholm integral equation 

(2.37) and then the evaluation of the resulting equation at the quadrature points r* to get 

N 

Qfc,p) + J2wjK(ri,uj,p)Q{ui,p) = H(n) (2.44) 
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Graphite 
Epoxy 

E-Glass 
Epoxy 

Boron 
Epoxy 

Isotropie 
material 

Ex   (GPa) 156.75 45 207 200 
E2  (GPa) 10.41 12 19 199.8 

V\1 0.31 0.19 0.21 0.3 
Vl% 0.49 0.19 0.21 0.3 

/Ü2  (GPa) 7.07 5.5 6.4 76.92 
P  (Kg/m3) 1580 2100 1990 7840 

Table 2.1: Mechanical properties used for the analysis. 

where Wj are the weights of the quadrature rule, while the N points rj are the abscissas. 

This is a set of N linear algebraic equations in N unknowns. For this problem N = 200 

quadrature points were selected in order to get good accuracy and the trapezoidal quadrature 

rule was chosen because of the complex behavior of 0 and the discontinuous nature of the 

free term H. 

Numerical inversion of the Laplace transform was performed using the method of Honig 

and Hirdes (1985) to find Ku(t) according to equation (2.43). In this method the choice of 

the Bromwich path is made automatically using a straight-forward convergence criterion. 

The numerical results presented correspond to isotropic and orthotropic cases. Proper- 

ties of transversely isotropic materials with fibers parallel and perpendicular to the x axis 

are considered in the second case. The properties used are taken from Schwartz (1997) and 

are given in table 2.1. 

Figure 2.2 shows the stress intensity factor history for an isotropic material in plane 

stress with concentrated loads located at x0 = 0.6. Note that the isotropic material is 

a degenerate case of the governing equations (2.3) and (2.4). For the isotropic material 

Cn — C22 = Y^U 
and ci2 = Y^ü- Hence 7x = 72 for p = 0 leading to ß = 1 and G(s,p) not 

defined. Consequently, the isotropic case presented here was obtained from the orthotropic 

formulation letting E\ = E, E2 = (1 — e)E,ui2 = v2z = v and H12 = (Ei + E2)/(4(l + u)) 

where E and v correspond to the isotropic properties and e is a small quantity with e « 1. 

Note that the stress intensity factor is indeed discontinuous and that the numerical inversion 
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technique captures the discontinuity quite well. It is worth noting that the presence of 

the singularity of Kn(t) when the Rayleigh wave arrives is also captured in the numerical 

results. The singularity in Kn(t) at t = 1.08 (label i?x) is similar to that found in the surface 

displacements in the calculated solution of Lamb's problem, where a concentrated shear load 

is applied on a half-space (Chao 1960). 

The stress intensity factor is zero until the arrival at the tip x = +1 at the normalized 

time t = 0.59 (label Pi) of the dilatational wave originated by the load at x = x0; at this time 

a jump in Kn{t) is observed. Before this time, a slight increase that is a numerical artifact 

is seen. Obviously the dilatational wave has an important effect in the dynamic response 

unlike in mode I loading where that wave had a minimum effect in Kr(t) (Rubio-Gonzalez 

and Mason 1998). When the Rayleigh wave arrives, Kn(t) experiences a singularity and 

a jump followed by a stable value given by equation (2.2). This cycle is repeated when a 

second dilatational wave arrives from the further point load at t — 2.36 (label P2) but with 

decaying amplitude due to the increased distance between point load and crack tip. 

The oscillations observed near the discontinuity in Kn(t) are due to the convergence of 

the method employed to invert the Laplace transform. These oscillations are quite similar 

to Gibb's phenomenon as seen in the Fourier transform or Fourier series representation of a 

discontinuous function (Papoulis 1962). 

The results for x0 ^ 0.6 are very similar. However, if x0 is very close to 1, then numerical 

difficulties arise in the solution of the Fredholm equation. Due the discontinuity in the free 

term H(r) in (2.40), the discrete representation Hfc) in equation (2.44) becomes a vector 

with mostly zero components as x0 ->■ 1~. Consequently, more quadrature points are needed. 

Figure 2.3 shows the results for the orthotropic material in plane stress with concentrated 

shear loads also at x0 = 0.6. Figure 2.3(a) corresponds to the case of fibers parallel to the x- 

axis while 2.3(b) to fibers parallel to the y-axis. Note a clear difference in the behavior, this is 

due to the fact that cd has an important effect in Kn(t), and in this case the difference is more 

noticeable since cd is quite different in each case, see table 2.2. Figure 2.3(b) is more similar 
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velocity 
(m/s) 

Graphite 
Epoxy x 

Graphite 
Epoxy y 

Boron 
Epoxy x 

E Glass 
Epoxy x 

Isotropie 
material 

Cd 10086 2974 10251 4685 5860 
vL-<T 

Cd 9992 2574 10219 4651 5294 
Cs 2115 2115 1793 1618 3132 

Vt-<T 2083 2037 1783 1572 2869 

Table 2.2: Wave speeds for the different materials. The composite materials are considered 
with fibers and wave propagation parallel to a;—axis, except in Graphite-Epoxy y where wave 
propagation is considered along y—axis. 

to figure 2.2, i.e. two separated cycles are observed, corresponding to the arrival of waves 

generated by the load at x — +xo and then the waves generated by the load at x = — x0. 

This happens because XQ/CR < (1 + rr0)/Q. That is the Rayleigh wave from +a;0 arrives 

before the dilatational wave from — x0. However, in figure 2.3(a) where X0/CR > (1 + x0)/cd 

the dilatational waves caused by both loads arrive at the tip x = +1 before any other wave, 

thus their effects are added and as a result Kjj(t) reaches the maximum dynamic overshoot 

sooner. The three main jumps in figure 2.3(a) occur at t = 0.21 (arrival of the dilatational 

wave from +x0, mark Pi), t = 0.84 (arrival of the dilatational wave from — x0, mark P2) and 

t = 1.01 (arrival of the Rayleigh wave from +x0, mark Ri). Note that in figure 2.3(b) the 

numerical solution captures quite well the singularities and jumps when the Rayleigh waves 

arrive at t = 1.03 and t = 4.15, but for long times the solution shows rapid oscillations, this 

is due to the insufficient accuracy in the numerical Laplace inversion technique and can be 

remedied with more computational effort. Looking at figures 2.2 and 2.3(b) we note that the 

plateaus are independent of the elastic constants cn, Cyi and c22 as expected from equation 

(2.2). A small error is observed in figures 2.2 and 2.3 since the stress intensity factor should 

be zero until the dilatational wave arrives, and these figures show a value slightly different 

from zero. This is due to the approximate numerical methods used to solve the Fredholm 

integral equation and to invert the Laplace transform. 

Figures 2.4 and 2.5 show the stress intensity factor Ku(t) for boron-epoxy and E glass- 

epoxy composites respectively. In both cases the fibers are considered along the x-axis. For 
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Finite Crack, shear loads, *,=0.6, Graphite-Epoxy Finite Crack, shear loads, X-=0.6, Graphite-Epoxy Ey>Ex 

bst/fa5(1-x0)) 

(a) 

fcsT/(ä5(1-X0)? 

(b) 

Figure 2.3: Stress intensity factor history for a finite crack with concentrated shear loads in 
orthotropic material. The normalization factor is given by the equation (2.2). The material 
properties correspond to graphite-epoxy composite with the fibers (a) parallel to the x axis, 
and (b) fibers parallel to y—axis. Labels Pi, Si and Ri are defined in figure 2.2. 

fibers along the y—axis the results are quite similar to figures 2.2 and 2.3(b); two similar 

cycles of discontinuity at the arrival of the dilatational wave and singularity at the arrival of 

the Rayleigh wave are observed. We note a similar behavior in figure 2.4 to that illustrated 

in 2.3(a) for the graphite-epoxy material. The difference is in the times when the jumps 

occur, that is, the times of the arrival of the dilatational waves, marks Pi and Pi- For figure 

2.3(a) the jumps occur at t = 0.2 and t — 0.84, while in figure 2.4 they occur at t — 0.17 and 

t = 0.70. For the E glass-Epoxy composite, figure 2.5, even though the fibers are along the 

x—axis, we observe the two cycles typical of the case when the fibers are along the y—axis. 

This is due to the fact that for this material in this orientation x0/cR < (1 + x0)/cd. Clearly, 

there is a strong dependence of Kn(t) on the elastic constants in these figures. 

It should be noted that for wave propagation along the material principal axes wave pure 

modes are obtained (Nayfeh 1995), i.e., the polarization vector is directed either along or 

normal to the propagation direction. Hence, we can distinguish dilatational and shear waves 

without ambiguity for this case of a crack lying on the principal axes of the material. Also, 
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Finite Crack, shear loads, x =0.6, Boron-Epoxy 

V/t'ad-V) 

Figure 2.4: Stress intensity factor history for a finite crack with concentrated shear loads in 
orthotropic material. The normalization factor is given by the equation (2.2). The material 
properties correspond to boron-epoxy composite with the fibers parallel to the x axis. Labels 
Pi, Si and Ri are defined in figure 2.2. 

for some materials the singularity when the Rayleigh wave arrives is difficult to capture. 

This is because the singularity occurs at times between the arrival of the shear wave and the 

arrival of the Rayleigh wave. As CS/CR —> 1, the duration of this period approaches 0 making 

it hard to numerically capture the singularity. See figures 2.3(a) and 2.4 where CS/CR = 1.015 

and 1.006 respectively. 

The method outlined here can easily be applied to solve the problem of a finite crack 

with a single pair of impact concentrated shear loads (figure 2.6(a)). As illustrated in figure 

2.6, this problem can be treated by a superposition of the two problems shown, that is, 

one with a symmetric (figure 2.6(b)) and the other with an antisymmetric (figure 2.6(c)) 

displacement field. The symmetric part is just the problem solved above with a load of 

magnitude q/2 instead of q. To solve the antisymmetric part we follow a similar procedure, 

the only difference would be the proposed displacement fields, equations (2.13) and (2.14), 

it would be required sine and cosine transforms instead of cosine and sine for u* and v*, 

respectively, due to the new symmetry. Application of Laplace and Fourier transforms leads 

to a reduction of the governing equations to a system of dual integral equation. The stress 
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Finite Crack, shear loads, x.cO.6, Eglass-Epoxy 

CsT/(a5(1-x0))      2 

Figure 2.5: Stress intensity factor history for a finite crack with concentrated shear loads in 
orthotropic material. The normalization factor is given by the equation (2.2). The material 
properties correspond to E glass-epoxy composite with the fibers parallel to the x axis. 
Labels Pi, Si and Ri are defined in figure 2.2. 

intensity factor in the Laplace domain is obtained for each problem, and then they are 

superimposed in this domain. Finally the Laplace inversion is performed on the sum to 

obtain Ku(t) for the original problem. This method of superposition was successfully used 

by Rubio-Gonzalez and Mason (1998) to find Kj(t) for a single pair of normal loads in a 

finite crack. 

-.    Xo  ^ 

q 

2 a 

q/2 
«   *°    > 

q/2 

4    "°   ► 

i a 

«   *°   »• 

(a) (b) (c) 

Figure 2.6: Schematic of the finite crack geometry with a single pair of concentrated shear 
loads, (a) Original problem which may be solved by a superposition of, (b) a symmetric 
problem and, (c) an antisymmetric problem. 
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2.5    Conclusions 

The dynamic response of a finite crack in orthotropic materials subjected to concentrated 

in-plane impact shear loads has been presented. The quasi-static solution can be extracted 

exactly from the dynamic formulation when t —> oo. The transient response shows a strong 

dependence on the material properties. Some important points follow from this analysis: 

1. The arrival of the dilatational wave at the crack tip makes an important contribution 

to the dynamic stress intensity factor Kn(t) unlike in mode I loading where that wave 

had a minimum effect in Ki(t). 

2. The condition if X0/CR is greater or less than (1 + x0)/cd, where x0 = 0.6 for this 

analysis, determines the main features of the dynamic stress intensity factor Kn(t). 

When the greater sign holds, the dilatational waves caused by both loads arrive at 

the tip x = +1 before any other waves, thus their effects are added and as a result 

Kn(t) reaches the maximum dynamic overshoot sooner; this behavior is illustrated 

in figures 2.3(a) and 2.4 corresponding to graphite-epoxy and boron-epoxy composites 

respectively with fibers along the x—axis in both cases. When the lesser sign holds, 

two separated and similar cycles in Kn(t) occur; each one corresponding to the arrival 

of stress waves at the crack tip generated by the two load pairs. This behavior is 

illustrated in figures 2.2, 2.3(b) and 2.5. 

3. When x0/cR < (1 + x0)/cd, figures 2.2, 2.3(b) and 2.5, a plateau is observed between 

the two cycles (between i?i and P2). On this plateau Kn(t)/K0 = 1 regardless of the 

value of the elastic constants. 
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Chapter 3 

Adiabatic Shear Localization in the 
Impact of Edge Notched Specimens 

Co-authored with K.M. Roessig, to appear in Experimental Mechanics 

Abstract 

Impact experiments are performed on edge notched specimens in the two dimensional punch 

geometry. Materials tested include 18Ni(350) maraging steel, S7 tool steel, 4340, 300M, 

HP 9-4-20, and D-6ac ultra high-strength steels and titanium 6% Al-4% V alloy (Ti6A14V). 

These materials have shown a high susceptibility to dynamic shear failure in previous studies. 

Impact velocity ranged from 25 m/s to 45 m/s, and shear bands were found to form at the 

notch tip and at the die corner on the back side of the specimen for all materials tested. 

Metallurgical analysis confirms the existence of adiabatic shear bands followed by a crack 

propagating through the fully developed shear band. High speed photography was used to 

observe the initiation of adiabatic shear bands shortly after impact. Laser etched lines on 

the specimen surfaces allowed the determination of the time of impact and the initiation 

time of shear failure. The elapsed time between the two was used to estimate the stress 

intensity factor at the time of shear band initiation. Comparisons of shear band initiation 

stress intensity factors at the notch tip and die corner are made. It is seen that the shear 

bands initiate at approximately the same stress intensity factor at both the notch tip and 

die corner. Finite element simulations support the use of a square root singularity for the 
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stress in the plate near the corners of a deformable punch or die. 
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3.1    Introduction 

In the plastic deformation of metals, adiabatic shear bands may form through high loading 

rates, geometry constraints, or a combination of the two. Adiabatic shear bands are zones 

of intense shear deformation in which local heating due to plastic work causes temperatures 

to become very high, thus softening the material and allowing for greater deformation and 

further heating. The process becomes self feeding and can lead to a collapse of the deforma- 

tion to a very narrow region. Several reviews of adiabatic shear banding have appeared, the 

most extensive ones are by Bai and Dodd [1] and Rogers [2]. 

In the modeling and study of shear bands, one of the most desirable accomplishments 

is to accurately predict the onset of shear localization. Zener and Hollomon [3] originally 

proposed an adiabatic shear localization criterion which states that when the stress decreases 

with an increase in strain at a material point, the deformation at that material point is 

unstable. A more common criterion used, primarily for its simplicity, is a critical strain 

criterion [1,4]. Other proposed criteria include those related to kinetic energy changes [5, 6], 

internal work hardening parameters [7], and maximum stress conditions [8]. 

Recently, the stress intensity factor has also been proposed as a shear band initiation 

criterion [9, 10, 11]. Chen and Batra [9] argue that a critical stress intensity factor is 

equivalent to a critical strain criterion under adiabatic conditions. The stress intensity 

factor is a measure of the energy release rate based on the elastic stress field. Therefore, it 

will only apply while the assumption of small scale yielding is valid, i. e., up to and including 

shear band initiation but not including subsequent propagation. Mason et al. [10] found that 

laser interference fringe patterns formed after impact of an edge notched specimen resemble 

the stress field of mode II elastic deformation under the assumption of small scale yielding. 

After the shear band initiates, the fringe patterns begin to change, and no longer resemble 

a pure mode II elastic deformation field. Therefore, up to shear band initiation, a mode 

II K-dominant field exists and the stress intensity factor can be determined for the stress 

field. It is clear that rate dependency in the initiation of adiabatic shear bands is important. 
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Critical stress intensity factors for mode I crack propagation have long been known to be 

rate dependent [12, 13, 14, 15]. Also, in Chen and Batra's analysis [9] it is stated that the 

instability strain for the onset of shear localization is rate dependent through the constitutive 

equation. Therefore, the mode II adiabatic shear band initiation stress intensity factor is 

also expected to be rate dependent. 

Adiabatic shear localization has been studied in a variety of tests including the torsional 

split Hopkinson bar, axisymmetric punch tests, and the impact of edge notched specimens. 

The impact of edge notched specimens was first conducted by Kalthoff [16], and since has 

received attention from many researchers [9, 10, 11, 17, 18, 19, 20, 21]. Though the test 

has met with success for the initiation of shear bands from a notch tip, it's application to a 

variety of metals is limited. Maraging steels and Ti6A14V alloy have been used, but beyond 

that, for example for the metals used in this study, forming shear bands in other metals using 

this geometry has been difficult if not impossible [22]. Finite element simulations examining 

the stress intensity factor histories in impact tests on plate and edge notched specimens 

placed under various geometric constraints show that when the back face is a free surface, 

the reflected wave is tensile [23], and with the arrival of the tensile wave from the back edge 

of the specimen, a drop in stress intensity factor results. However, using a fixed back edge 

or two dimensional punch support geometry results in a compressive reflected wave, and the 

stress intensity factor increases with the arrival of this wave. Therefore a higher maximum 

stress intensity factor can be achieved with the same impact velocity if support of the back 

edge is provided. 

Roessig and Mason [24, 25] have recently conducted axisymmetric punch tests and ex- 

amined the failure of Ti6A14V under a wide range of loading rates and punch/die clearances. 

Finite element simulations were also performed to examine localized behaviors within the 

material and estimate initiation of shear instabilities. By extrapolating the stress inten- 

sity factor histories derived by Roessig and Mason [23], a rough estimate of 100 MPa-v/m 

can be made for the initiation stress intensity factor in the punch tests reported in these 
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studies. Also, impact of Ti6A14V edge notched plates was conducted by Zhou et. al [11], 

and in this study, the J-integral was evaluated at initiation for different impact velocities. 

Extrapolation of these results to the punch velocity in the Ti6A14V punch tests conducted 

by Roessig and Mason results in a second estimate for the initiation stress intensity factor of 

125 MPa-y/m. With this encouraging comparison of the stress intensity factor at shear band 

initiation between these two dissimilar studies, one is motivated to further consider a criti- 

cal stress intensity factor as a parameter describing the material susceptibility to adiabatic 

shear localization and as a criterion predicting the initiation of adiabatic shear bands. The 

purpose of this work is to compare the initiation stress intensity factors from two different 

stress fields within a single test and to experimentally examine the validity of the stress 

intensity factor as an adiabatic shear band initiation criterion. 

3.2    Experimental Methods 

Impact tests of edge notched plates are conducted. In an earlier study, Roessig and Ma- 

son [23] examined the dynamic stress intensity factors in the impact of edge notched and 

rectangular plates with various support geometries. Of the combinations discussed in that 

work, only the impact of edge notched specimens in the two dimensional punch support 

configuration is examined here. The edge notched specimens used in this study are 50.8 mm 

by 101.6 mm. The notch is 12.5 mm in length and is placed 35 mm from one end as shown 

in Figure 3.1. Tests with double notched specimens were also conducted for S7 tool steel to 

examine any differences in shear band initiation due to that change in geometry. 

The experimental setup consists primarily of an air gun, a Cordin 330 high speed camera, 

and a specimen/die apparatus. The projectile is a cylinder 15 cm long and 30 mm in diameter 

and is made of a 18Ni(350) maraging steel hardened to 50 HRC. Impact speeds ranged from 

25-45 m/s. The die insert that supports the specimen, as shown in Figure 3.1, is made of 

4340 steel hardened to 48 HRC. These materials were chosen to minimize plastic deformation 

of the projectile and support. A specimen support is threaded onto the barrel to ensure a 
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Figure 3.1: Schematic of the edge notched specimen and punch/die configuration. 

normal impact. The high speed camera is placed to view the face of the specimen. Lines 

were etched by laser onto the surface of the specimen at a density of 16 lines/cm to make 

the shear deformation after impact observable. The Cordin 307 light source was placed in 

line with the camera, and was triggered by an infrared emitter-detector pair placed on the 

barrel. A schematic of the experimental setup can be seen in Figure 3.2. 

specimen 

infrared detector. 
die 

a: catch box 

camera controller 
and 
light trigger 

light source 

high speed camera 

Figure 3.2: Schematic of the experimental setup. 

Several materials were tested including Ti6A14V, 18Ni(350) maraging steel, S7 tool steel, 

and the ultra high-strength steels 4340, 300M, HP 9-4-20, and D-6ac. The Ti6A14V was used 
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in the mill annealed condition, while the other materials were quenched and tempered to 

Rockwell C hardnesses of 58, 58, 51, 52, 46, and 53, respectively. The heat treatments used 

are the same as those used by Dillmore and Foster [26] and Mason [22]. In previous studies, 

these materials have been shown to be susceptible to adiabatic shear banding [27, 28, 29, 4]. 

Their properties are shown in Table 3.1. Tension tests were conducted on an ATS 900 

Universal Testing Machine with strain being measured by an MTS 632.12E-20 Extensometer. 

All tests were performed according to ASTM Standard E8 to determine the yield strength, 

ay, and strain hardening coefficient, n. The hardening coefficient is found using the relation 

n = d(loga)/d(loge) in the range from yielding to the maximum engineering stress. These 

material parameters are measured because they are known to be important in determining 

a materials susceptibility to adiabatic shear banding [2, 24]. 

Material Yield Strength (MPa) Strain Hardening Exponent 
C350 2300 0.081 

Ti6A14V 1000 0.021 
4340 1370 0.104 
300M 1450 0.172 
D6ac 1440 0.160 

S7 1500 0.130 

Table 3.1: Constitutive properties of the materials used in this work. 

In the study by Roessig and Mason [23], the stress intensity factor histories are shown to 

be different for the notch tip and the die corner. As the stress intensity factor is dependent 

upon the impact speed, two different impact speeds were used in this study to compare the 

initiation stress intensity factors, Ki, at the die corner and notch tip. A 45 m/s impact 

speed yields a stress intensity factor history for the notch tip that is comparable to a stress 

intensity factor history for the die corner at a 35 m/s impact speed. The sets of experiments 

described here do not examine the rate dependency of shear band initiation, so similar K(t) 

time histories were used to eliminate rate effects. It is felt that before rate effects can 

be examined, the concept of using the stress intensity factor as an initiation criterion for 

adiabatic shear bands should be validated. That is the purpose of this work. Examination 
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of rate effects is left for future studies. 

Stress intensity factor histories used to estimate Kt were determined through finite 

element analyses following the method of Roessig and Mason [23]. These finite element sim- 

ulations used quarter point elements at the punch corner to force a square root singularity, 

and plane stress elements were used to model the thin plate. This method makes many ide- 

alizations which are not true for the experiments described here. For example, the projectile 

was assumed to be rigid. Due to the high strength and modulus of the specimen materials, 

the use of an approximately rigid projectile is not experimentally feasible in the impact tests. 

The projectile used here is made of hardened 18Ni(350) maraging steel, which has a higher 

yield strength and equivalent modulus as the specimen materials, consequently, it will not 

act as a rigid projectile. This reduces the effective impact speed as a compressive wave will 

also travel back down the projectile. Therefore, the stress intensity factors derived from the 

numerical analysis in [23] will be higher than for the actual tests. To obtain similar impact 

speeds in the finite element and experimental tests, an impact speed for the rigid projectile 

in the finite element analysis of half the physical impact speed in the experiment was used 

[20]. 

The stress singularity assumed at the punch corner in the finite element analysis may 

also be different for the experiment. It is well known that a square root singularity in stress 

exists in a deformable material near the sharp corner of a rigid punch [30, 31, 32, 33], but 

the singularity at the corner of a deformable punch may be different. For that reason, a 

separate three dimensional, static, elastic finite element analysis of the stress singularity in 

the specimen loaded under a deformable punch is conducted. This is the simplest analysis 

which does not assume the form of the singularity, as in the analysis described in the previous 

paragraph, and also eliminates the assumptions of a rigid punch or plane stress conditions. 

The finite element package ABAQUS/Standard is used. The mesh of the specimen consisted 

of 20-node quadratic bricks with 15-node quadratic prisms at the point under the corner 

of the punch, see Figure 3.3. Near the punch corner, there are 25 layers of 20-node bricks 
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to model the deformation as accurately as possible. The punch was made of 8-node linear 

bricks, and a prescribed displacement was given to the end opposite the one in contact with 

the specimen. Displacements were recorded along a radial line directly under the punch 

corner. The singularity was determined by the slope of the logarithm of the displacements. 

This singularity was compared to the same specimen loaded by a rigid punch with the same 

prescribed displacement. In this way, any error associated with the contact between two 

bodies could be neglected. 

Other differences between the idealized test and the physical impact test exist. The first 

of these differences is the notch radius as compared to a sharp crack. The stress field around 

a finite radius notch was examined by Tada et al. [34] for small angles away from the notch 

axis. It is stated that the equations for the sharp crack are valid for a slender notch as long 

as the radial distance in question is large compared to the notch radius. The notch in these 

experiments was created by an electric discharge machining (EDM) process, and the notch 

radius is approximately 0.075 mm. At distances of only 1 mm away, the radius is over an 

order of magnitude larger than the notch radius, so any variations due to the finite notch 

radius are neglected for this work. The projectile and die corners are also not sharp as in 

the analytical analysis, but have finite machined radii of 0.25 mm. Again, by the argument 

above, these effects are neglected in this work. 

3.3    Results 

Formation of shear bands at the die corner is confirmed by a metallographic analysis. Post 

mortem polishing and etching of the specimens reveals shear bands as the white etched lines 

mentioned by Rogers [2]. Figure 3.4 shows a shear band tip initiated at the die corner in a 

specimen of HP 9-4-20 impacted at 35 m/s. The fully developed band was measured at 1.4 

mm in length and appears as a white line in the picture. In front of the band, the grains show 

large shear deformation. A rough estimate of the process zone length from the micrograph is 

75 fim. After further deformation, and the shear band has propagated well into the specimen, 
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Figure 3.3: The three dimensional finite element mesh used under the corner of the de- 
formable punch is shown in a), while a close view of the elements at the punch corner is 
shown in b). 

62 



Figure 3.4: Adiabatic shear band tip and process zone near the die corner in an HP 9-4-20 
specimen impacted at 35 m/s. The shear band tip shown here is the end of a long white 
etching band similar to the one shown in Figure 3.5. 

a crack initiates at the shear band initiation site and propagates along the path of the shear 

band. Figures 3.5 and 3.6 show a well formed shear band with a crack that initiated at the die 

corner in a D6ac specimen impacted at 35 m/s. The band has already propagated into the 

specimen approximately 4 mm. At later times, the crack propagated through the shear band 

as seen in Figure 3.7. In this picture of a Ti6A14V specimen impacted at 45 m/s, the crack 

eventually splits the white etching layer. In all materials, at the die corner and notch tip, 

the adiabatic shear band is observed to have initiated first with a crack propagating behind 

during failure of the specimen. The fracture surface confirms that the failure mode was 

ductile and shear in nature. Figure 3.8 shows the parabolic voids characteristic of a ductile 

shear failure found during adiabatic shear localization [1, 35, 36]. The fracture surfaces of 

the 4340 and 300M steel specimens shown in Figure 3.8 are representative of all the fracture 

surfaces of the various materials, with void sizes ranging from l-5//m. Extensive plastic 

deformation after shear band initiation prevented a complete examination of all materials at 

different impact speeds. Additionally, shear band often propagated completely through the 

specimen. For these reasons, a comparison of shear band lengths and widths is not given. 
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Figure 3.5: Adiabatic shear band initiation site at die corner in a D6ac specimen impacted 
at 35 m/s. A crack has initiated propagated through the shear band. 

Figure 3.6: Close view of the crack tip seen in Figure 3.5. 

High speed photography of the laser etched specimens allowed for the recording of the 

development and propagation of adiabatic shear bands.   Figure 3.9 shows the formation 
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of an adiabatic shear band at the die corner in a 300M steel specimen impacted at 35 

m/s. Initiation of the shear band was determined to occur just before the frame in which 

propagation is initially observed. The first picture shows the undeformed lines before the 

compressive wave has impinged on the back surface. After 20 fis, the etched lines have been 

sheared at the middle of the picture on the right side. In the third picture, just 3 fis later, 

the shear has collapsed to a much thinner region occurring along a line extending from the 

die corner. In the last picture, after another 8 /is, the shear band is seen propagating into 

the specimen. Shear band formation at the notch tip and die corner during the impact of 

double notched specimens was identical to that of the single notched specimens. 

25u 

Figure 3.7: Adiabatic shear band in Ti6A14V alloy with a crack that completely propagated 
through the band. 

One interesting point is that two shear bands can form at the die corner. Figure 3.10 

shows two shear bands initiating from the die corner in a 4340 steel specimen impacted at 

45 m/s. This behavior has been observed in post mortem examinations of Ti6A14V alloy by 

Holt et al. [37], but this is first time the formation of the two bands has been recorded in 

real time. The shorter shear band initiates first, the other initiates approximately 8/J.S later 

but then propagates further into the specimen. The shear bands have separate initiation 

sites along the die corner; this is also seen in micrographs by Holt et al.   Unfortunately, 

65 



extensive deformation after the shear band formation shown in Figure 3.10 prevented post 

mortem examination of the microstructure in the region. This is the only occurrence of this 

phenomenon seen during this work, 

a) b) 

Figure 3.8: Fracture surfaces near the die corner of 4340 and 300M steel specimens impacted 
at 45 m/s. Parabolic voids characteristic of ductile shear fracture are present. 

The finite element analysis revealed that the use of a square root singularity is a good 

approximation to the stress field in the specimen even in the case of a deformable punch. 

Assuming a relation between radial distance and displacement of the form u = Crx, the 

stress singularity has a value of A - 1. For the circumferential direction, the finite element 

simulation rigid punch results in an exponent of A=0.5293 on the displacements, giving 

a power of A — l=-0.4707 for the stress and strain field. The deformable punch gives an 

exponent of A=0.5353 on the displacements, a difference of approximately of 1%. The radial 

directions reveal exponents of A=0.5359 and A=0.5509 for the rigid and deformable punches, 

respectively. The difference between these two values is approximately 3%. From these 

results, it is concluded that the singularity of the stress fields are comparable between the 

rigid and deformable punch cases. By modeling the deformable punch on an elastic half 

space as a 90° corner of a single elastic body, the singularity can be found explicitly. From 

the analysis of Seweryn and Molski [38], the exponent on the displacements is seen to be 

A=0.5445, which leads to a singularity power of A — 1 =-0.4555 on the stress and strain 
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fields. This number is comparable to the powers found by the finite element simulations. 

Therefore, within a few percent, the singularity of the rigid and deformable punch stress 

fields are assumed to be the same. 

3.4    Discussion 

The analysis of the high speed photography allowed for a number of macroscopic obser- 

vations. The main focus of this experiment was the determination of an initiation stress 

intensity factor. Combined with the tension test data, a comparison of adiabatic shear band 

susceptibility can be made. The angle at which the shear bands form from the die corner can 

also be examined and compared with theoretical predictions. Microscopically, the location 

of shear band initiation point along the punch/die corner can be examined to determine the 

effect of rounded corners as opposed to sharp ones. Each of these points will be discussed in 

detail. 

The average initiation stress intensity factors, Kit for the different materials for nomi- 

nally the same stress intensity factor history at both the die corner and the notch tip are 

shown in Table 3.2. Initiation times, measured from th time of impact, representative of 

each material are also listed in the same table. These values change with impact speed and 

are provided only to give the reader an idea of the time scales involved. The last column 

is the average Ki for all tests for shear bands initiated at the die corner or the notch tip. 

Comparison of Ki for the die corner and notch tip shows that there is not a large differ- 

ence between the initiation values for the two different stress fields. Maximum differences 

between the two are about 10%. The interframe time used in these tests was 2.78/zs. From 

the stress intensity factor histories used to determine the initiation values, a difference of 

2.78/xs means an approximate change in Ki of 20 MPay'm. Therefore, assuming a possible 

error in judging the initiation frame by plus or minus one frame leads to an uncertainty in 

Ki of ±20 MPa^/m. By this argument, the initiation values of the stress intensity factor 

for both the notch tip and die corners are essentially equivalent in these tests.  The novel 
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Figure 3.9: High speed photography sequence of adiabatic shear band formation near the die 
corner in 300M steel impacted at 35 m/s. The schematic indicates the area on the specimen 
surface that appears in the photographs. 
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Figure 3.10: High speed photograph of two shear bands forming at the die corner in a 4340 
steel specimen. 

concept of this comparison is that the geometry at each initiation location is quite different; 

yet the stress intensity factors at shear band initiation are essentially equivalent. This result 

strongly supports the assertion that the stress intensity factor can be used as a criterion for 

shear band initiation in the same manner it is for tensile crack initiation. 

Plotting the initiation stress intensity factors against material parameters allows for a 

comparison of the shear band susceptibility and a demonstration of the dependence of this 

parameter upon the material constitutive law. Chen and Batra [9] obtain a monotonically 

increasing relationship between the instability stress intensity factor, Ki, and the critical 

strain, 7*. The critical strain can be related to the material parameters through the instability 

analysis of Bai and Dodd [1]. By assuming a power law hardening model with constant strain 

rate, adiabatic conditions and linear thermal softening, it can be shown that the critical 

strain for adiabatic shear localization is proportional to square root of the strain hardening 
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Material tiD  (/XS) KiD (MPa^M) UN (fis) KiN (MPa^/rä) Avg. Ki (MPav^H) 
C350 13 81 26 88 83 
Ti6A14V 25 132 40 115 127 
4340 22 222 36 195 211 
300M 23 220 38 200 213 
D6ac 25 241 40 210 231 
HP 9-4-20 27 293 45 295 294 
S7 N/A N/A 225 225 

Table 3.2: Average initiation stress intensity factors, Ki, for each material at the die corner 
and notch tip. The subscripts D and N represent values for shear band initiation at the 
die corner and notch tip respectively. The last column represents the average Ki over all 
the tests. The initiation times listed here are representative values only and will vary with 
impact speed. 

exponent divided by the yield strength, or 

7t « (3.1) 

following the notation of Bai and Dodd and Chen and Batra. Figure 3.11 shows Ki as 

a function of the yield strength, ay, divided by the strain hardening exponent, n, for each 

material. As the instability stress intensity factor will monotonically increase with instability 

strain, the data presented here is expected to vary as 1/^/77, or \/Jay/n. High strength and 

low strain hardening are known to make a metal more susceptible to shear banding [2, 24]. 

Tensile tests of 1018 mild steel gave a lower ay/n parameter than the materials shown, and 

shear localization could not be attained in the impact tests. This indicates a very high Ki 

and further motivates the upward slope of the curve near ay/n=0. The shape of the plot 

is similar to a plot found for mode I fracture of metals [35]. For mode I fracture, the crack 

initiation stress intensity factor is a function of the yield strength of the material, and the 

general trend is that higher strength materials have lower critical stress intensity factors. A 

similar trend is seen here; a material will have a lower critical stress intensity factor for shear 

band initiation with higher yield strength and lower strain hardening. This does not mention 

strain rate effects, which are important [25], but gives a general idea of which materials are 

more likely to shear band and how that susceptibility depends on yield strength and strain 
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hardening. The investigation of rate effects is left for a future study. 

Initiation SIF vs. Shear Banding Parameter 
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Figure 3.11: Initiation stress intensity factors as a function of the shear banding parameter 
<jy/n for all materials tested. 

The angle at which the shear band forms with respect to the notch tip or the free 

surface at the die corner can be predicted. In a pure mode II elastic stress field around a 

crack tip, the maximum shear stress occurs along the crack axis, but shear bands typically 

form 5°-15° away from the crack axis. Chen and Batra [9] analyze the angle at which the 

maximum plastic strain occurs along the elastic-plastic boundary at the notch tip to show 

that a 6°-20° variation can be found analytically, depending upon the mixity parameter. A 

similar type of analysis can be performed on the stress field around a die corner. The elastic 

stress field at the die corner is given by Nadai [32], and analysis of the shear stress leads 

to a maximum shear stress direction of 110° away from the free surface of the specimen. 

Examining the plastic zone at the die corner in a way similar to Batra's analysis, an angle of 

shear band initiation of 95° is found. Actual angles measured from specimens gave an angle 

of approximately 105°, which falls between the two analytical estimates given above. The 

elastic estimate is closer to the actual value, and because it is easier to determine, the elastic 

analysis for maximum shear stress is recommended as an adequate method for estimating 
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the shear band angle in the case of the die corner. It is interesting to note that the angle of 

shear band propagation measured above would cause the shear bands formed at the punch 

corners in an impact test of a plate specimen to propagate in a direction toward each other 

and may form a projectile-like point in the specimen. 

The location of shear band initiation relative to the punch corner reveals information 

about the stress distribution under the punch. The projectile and die used in the impact 

experiments have a corner radius of 0.25 mm. In reality because of this finite corner ra- 

dius, there is not a singular stress field at the punch/die corner. Johnson [30] states an 

important principle that the pressure distribution between two elastic bodies, whose profiles 

are continuous through the boundary of the contact area, falls continuously to zero at the 

boundary. The stresses, therefore, will follow the square root singularity away from the 

punch/die corner, but must fall to zero at the point where contact between the punch/die 

and plate ends. The stress distribution will then have a maximum away from the end contact 

point, as shown schematically in Figure 3.12. One would expect a shear band to initiate at 

the point of maximum stress, and indeed that seems to be the case, see Figure 3.5. The 

shear band initiates from the surface in contact with the rounded edge along the die corner 

where the maximum stress is presumed to be and not from the point where the die and 

plate initially come into contact. In a punch or die with square corners, these two points 

would coincide with each other. The effect of rounding the punch or die corners, therefore, 

reduces the maximum contact pressure and shifts that point away from the initial contact 

point between specimen and punch/die. Similar effects are seen in finite element studies of 

shear band initiation at the notch tip [39]. 

3.5    Conclusion 

The impact of edge notched plates has been conducted to examine the initiation of shear 

bands at the punch/die corners and notch tip. High speed photography was used to view 

the formation and propagation of adiabatic shear bands within the specimens. An initiation 
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punch/die 

plate specimen 

Figure 3.12: Schematic of the pressure distribution under a punch/die corner with a finite 
radius (K.L. Johnson, 1994). 

stress intensity factor for the shear bands in each material tested was determined from a 

stress intensity factor history obtained through finite element analyses. The materials tested 

include 18Ni(350) maraging steel, S7 tool steel, 4340, 300M, HP 9-4-20, and D-6ac ultra high- 

strength steels and titanium 6% Al-4% V alloy. Comparable initiation stress intensity factors 

for both the punch/die corner and notch tip stress fields were found. The initiation stress 

intensity factor decreases with increasing yield strength and decreasing strain hardening 

coefficient. Strain rate hardening is not included in the parameterization. 

The use of a square root singularity for the deformable punch is validated by a three 

dimensional, static, elastic finite element analysis. The singularities between the deformable 

and rigid punches were shown to differ by less than 3%. The finite punch corner radius is 

seen to reduce the maximum contact pressure between the specimen and punch, but does 

not prevent the formation of adiabatic shear bands. In fact, it may promote the formation 

of multiple bands. 
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Chapter 4 

Stress Field Evaluation Around 
Adiabatic Shear Band Initiation from 
a Notch Tip and Die Corner 

Co-authored with K.M. Roessig 

Abstract 

The coherent gradient sensing (CGS) technique is used to examine the out of plane displace- 

ment fields around adiabatic shear bands initiating at a notch tip and a die corner. The 

stress fields around the notch tip, die corner and shear band are modeled using a combi- 

nation of the mode II or mode I stationary crack tip stress fields and a superposition of 

shear point loads acting on a propagating crack face. A plane stress assumption is made to 

relate in plane stresses to out of plane displacements. In 18(Ni)300 maraging steel, shear 

bands are observed to initiate at the notch tip at a stress intensity factor of 95 MPa\/m 

and propagate at an average velocity of 650 m/s. Initiation at the die corner in a 4340 steel 

specimen occurred at a stress intensity factor of about 200 MPai/m with an average shear 

band speed of 1020 m/s. In both geometries, a large increase in the stress intensity factor is 

observed after shear band initiation until an apparent steady state value is reached. In the 

die corner initiation tests, greater shear band velocities and ratio of increase for the stress 

intensity factor reflect that a greater K at the die corner.  The validity of the small scale 
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yielding assumption is confirmed through the recording and prediction of the elastic stress 

fields around the notch tip and die corner. 

4.1    Introduction 

Adiabatic shear banding is the process in which an instability forms in a material under 

dynamic loading due to the generation of heat from plastic work. Either high loading rates 

or geometric constraints concentrate deformation in a small area, and large amounts of 

heat are generated. If loading rates are high enough, heat conduction is negligible, and 

thermal softening dominates the material behavior over strain and strain rate hardening. As 

deformation proceeds, thermal softening causes the material to be weaker and deform even 

further. The deformation can then form a self feeding process and collapse to a small band 

Recent experimental studies have used the side impact tests of edge notched specimens 

to study shear band formation. Originally performed by Kalthoff [16, 40], the test has 

also been used by Zhou et al. [11] and Mason et al. [10]. The impact tests in these works 

placed no constraints upon the specimen, so the reflected wave from the back surface is 

tensile. The main drawback to this experiment is the limited number of materials that 

exhibit shear localization in this geometry. The tests described here use a variation of this 

test that included a die support behind the specimen which caused a compressive reflected 

wave and a subsequent increase in the stress intensity factor at the notch tip. This allowed 

for shear localization to occur at both the notch tip and die corner during a single test. It 

was found that the dynamic stress intensity factor at the initiation of the two shear bands 

was equivalent within the uncertainty of the experimental analysis. 

The stress intensity factor has been proposed as a possible adiabatic shear band initiation 

criterion [9], and its equivalence to a critical shear strain criterion has been shown. The 

critical strain criterion has been widely used [1], but its applicability to engineering problems 

as opposed to laboratory conditions has been limited. The stress intensity factor has been 
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widely used to describe the stress field around a crack or slender notch and has recently 

been applied to sharp corners [41]. Its use as an adiabatic shear band localization criterion, 

though, has only been recently investigated [10]. Though the results of the previous chapter 

are encouraging, the stress intensity factor should be measured directly from the specimen 

during deformation, and accurately enough to determine if the initiation stress intensity 

factors at the notch tip and die corner are consistent. 

Here, the complete stress field for an initiating shear band is determined from the ad- 

dition of a dynamic, asymptotic cohesive zone stress field to a stationary crack tip stress 

field. The cohesive zone is modeled as having a constant shear stress by superposing the 

solution of a pair of point loads acting on opposite sides of a crack face a constant distance 

I from the crack tip moving at velocity v [42]. The shear stress need not be constant, but 

is modeled as such here for simplicity. In previous analyses by Mason et al. [10], the shear 

band was modeled as a static Dugdale zone. The stress intensity factor history in that study 

was obtained from the results of Lee and Freund [20] and coherent gradient sensing (CGS) 

impact experiments performed on PMMA [43], and then the shear stress in the Dugdale 

zone was modified to fit fringe patterns to the data. The problem with that method is that 

the stress intensity factor history is assumed known before the test is conducted. Also, no 

dynamic effects are included. By superposing a point load solution [42], the dynamic effects 

of the band propagation are included here. The shear band length is measured directly from 

high speed photographs, and the shear band velocity is determined by a linear regression. 

As all other parameters depend on material or geometrical considerations, a two variable fit 

including the stress intensity factor from the notch or die corner and shear stress from the 

cohesive zone is conducted. The cohesive zone is assumed to have no thickness, and small 

scale yielding is also assumed. By using the CGS technique to examine the deformation fields 

around adiabatic shear band initiation from a notch tip or die corner, this work attempts to 

validate the small scale yielding assumption incorporated into the analysis of the previous 

chapter and measure if, rather than calculate it. Additionally, the shear stress in the band 
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is measured as well. 

4.2    Experimental Methods 

The specimen geometry is a 50mm x 100mm rectangle with a thickness of 6.4mm. For 

specimens where notch tip initiation is examined, a notch 25.4 mm in length is placed through 

an electric discharge machining process 35mm from one edge so that impact occurs just below 

the notch. The notch radius from this process is approximately 0.075 mm. These specimens 

are made of 18(Ni)300 maraging steels, also denoted C300, hardened to 52 Rockwell C. 

For the specimens in which die corner initiation is of interest, a similar notch 12.7 mm in 

length is used in AISI 4340 steel hardened to 45 Rockwell C. A schematic of the specimens 

is shown in Figure 4.1. The materials used here are known to be susceptible to adiabatic 

shear localization. 

(a) (b) 

35 mm 35 mm 

100 mm 
H 

12.7 mm 100 mm 

50 mm 50 mm 

Figure 4.1: Specimen geometries for the study of shear band initiation from the notch tip 
(a) and die corner (b). 

4.2.1    Apparatus 

The projectile used in the impact of the specimens is a cylinder 15 cm long and 30 mm in 

diameter. It is made of 18(Ni)350 maraging steel hardened to HRC 50. An air gun is used 

to fire the projectile, and a specimen support is threaded onto the barrel to ensure a normal 
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impact. Two back support configurations are used. A free back surface places no constraints 

upon the specimen other than to ensure normal impact, while a die is placed behind the 

specimen to achieve a fixed back support. Figure 4.2 shows the experimental configuration 

when the die is placed behind the specimen. The insert is used to obtain different punch/die 

clearances, the clearance being about 0.5 mm for the tests conducted here. The insert is 

made of AISI 4340 steel hardened to HRC 50, while the die is made of a mild steel. The air 

gun, barrel, and die are all clamped to a large I-beam to ensure proper alignment. Infra-red 

emitter-detector pairs are placed at the end of the barrel to both measure the velocity of the 

projectile as well as trigger the laser and camera. 

Die 

Insert 

Specimen 

Projectile 

Figure 4.2: Experimental configuration when the die is placed behind the specimen for a 
fixed back surface. 

A collimated argon ion laser beam with a wavelength of 514 nm and 50 mm in diameter 

is passed through a beam splitter and reflected off the specimens during impact. The CGS 

technique is used to obtain the fringe patterns of the stress field in the specimen after impact. 

This system consists of passing the beam through a pair of high density diffraction gratings 

(40 lines/mm) and then a lens to focus the image. This system will be described more fully 

in Section 4.2.2. As many images will form from the diffraction gratings, a spatial filter 

is needed. In this case, the long lens of the Cordin 330 High Speed Camera acts as the 

spatial filter. The camera is aligned to allow the first order image into the camera. During 
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the test, the laser is sent through a cavity dumper so that the beam is pulsed for 50 ns in 

synchronization with the framing rate of the high speed camera. 

4.2.2    Coherent Gradient Sensing 

The CGS method is used to examine the stress fields in the specimen during a dynamic 

impact event. The prenotched specimen is lapped and polished to provide a highly reflective, 

optically flat surface. As the specimen deforms, out of plane displacements will cause the 

reflected beam to be distorted and the laser light will no longer be parallel. This in effect 

creates a path length differential between the different light rays. The reflected beam is 

then passed through a diffraction grating with a line density of 40 lines/mm. This grating, 

denoted Gi in Figure 4.3, splits the beam into numerous diffraction orders. For the sake of 

simplicity, only the first order diffractions are included here. These are shown as Ei, Eo, 

and E_! in Figure 4.3. Each of these then impinges on a second grating, G2, of the same 

line density. There are now nine beams after the second grating as each beam was again 

diffracted into three more. Of these nine beams, the (-l,0)/(0,-l) and (1,0)/(0,1) beam pairs 

are parallel. A filtering lens can then be used to focus these parallel beams to a single spot. 

In the focal plane, a spatial filter is used to eliminate all the superfluous beams. Another 

lens is then required to produce the final image. 

A brief discussion of the analysis as described by Mason et al. [10] now follows, while 

a full explanation can be found by Tippur et al. [44]. The wave that impinges on the 

first diffraction grating is assumed to be parallel with some phase difference, S(xi,x2), due 

to the out of plane deformation in the specimen. All disturbances in the beam propagation 

direction, denoted x3 in Figure 4.4, are neglected. The two gratings shift the beam a distance 

e = Atan0«A0, (4.1) 

where A is the grating separation distance defined in Figure 4.4, and 6 is the diffraction 

angle shown in Figure 4.3. The diffraction angle is given by the relation 

6 = sin-1 - « - (4.2) 
P     P 
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Incident 
Plane Wave 

Grating G1 Grating Gg , Filter Plane 

Filtering Lens 

Figure 4.3: Schematic of the principle of CGS. 

where A is the wavelength of the light and p is the grating pitch. 

The two parallel, sheared wavefronts constructively interfere if their phase difference is 

an integer multiple of the wavelength, or 

S(xi + e, x2) - S(xi, x2) = mX. 

Dividing by e yields 
S(xi + e,x2) - S(xi,x2) _ mX 

e e 

which can be approximated as 
d(S(xi,x2)) _ mp 

dx~i        ~X 

(4.3) 

(4.4) 

(4.5) 

for small e. Equation (4.5) is valid for the derivative in either the xx or x2 directions. 

For an isotropic, linearly elastic material, the out of plane displacements are given by 

the formula 
vh 

W3 = -^g(^ll+^22), (4.6) 

where v is the Poisson's ratio and E is the elastic modulus of the material. The stress an 

and 022 are the average plane stresses through the thickness.  As plane stress is assumed, 
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Filtering Lens 
Camera Lens 

Figure 4.4: Configuration for CGS in this experiment. 
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<733=0. The phase difference is related to the displacement and can be approximated by 

S(xux2) « 2u3 = —^fan + 0-22)- (4.7) 

Substituting Equation (4.7) into (4.5) yields 

duz _    uh d(au + 022)      rnp 
ldx{~   ~E      tot      ~ÄT- (48) 

Equation (4.8) is used to examine all the fringe patterns produced by the CGS system in 

this work. 

4.2.3    Data Reduction 

As stated in Section 4.2.2, CGS measures gradients of the out of plane displacement of the 

specimen. Assuming a two dimensional stress state, these displacements can be related to 

the in plane stress fields. Therefore, to predict the shape of the fringe patterns after impact, 

the stress field must be found. The following sections describe the stress field derivation for 

each of the cases described in this work. 

Notch Tip Initiation 

The stress field around the notch tip during shear band initiation is assumed to be given by 

the superposition of two separate stress fields. The first is the well known mode II stress 

field around a crack tip [45] given by 

an = ^ßXiM (4.9) 
V2 7IT 

where for mode II 

JU   =   — sin 0 L          0      30] ■          ,      , 
- |2 + COS-COSyj, (4.10) 

•   0     0      30 , 
E12   =   sin-cos-cos—, (4.11) 

0 l\      •   0 •   30} , \;22   =   cos- \1 -sin-sm-   . (4.12) 
2 
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The assumptions for these stresses are a linear elastic material in the presence of a K- 

dominant field. The final form of the fringe equations determined by Equation 4.8 becomes 

0(ffn +0-22) Kn    _ä  .   /3 
dx 

d(an + <722) 

A//    -a  .   /3 A 
=   -7= r  * sin   -0 

y/2ir V2 ) 
#//        _3 /3. 

r 2 cos 

(4.13) 

(4.14) 
dy y/2ir 

Examples of the expected fringe pattern for the mode II deformation field are shown in 

Figure 4.5. The solid and dashed lines correspond to dark and light fringes, respectively. 

The thick line on the negative x axis represents the notch. 

xx      yy' 3(CT   +0   )/9y 
xx     yy'     ' 

/        t    I   'xV-^J^ 
/   1 \ziz/'i 
(     >v----'''y 

■ 

-10       -I        -6        -4        -2 0 2 4 6 I 10 
x (mm) 

Figure 4.5: Example fringes for the derivatives in both the x and y directions for a mode II 
deformation field. 

The second stress field is due to shear band itself after initiation. This is modeled by a 

cohesive zone along the notch axis in front of the notch. The cohesive zone uses the solution 

for a pair concentrated shear loads acting on the faces of a propagating crack [42], see Figure 

4.6. By placing many point loads along the crack face, the value of I being different for 

each point load, a constant shear stress applied over the length of the shear band can be 

approximated. The value of each pair of point loads depends upon the shear stress and the 

number of point loads used. In the analysis here, point loads were spaced at every 0.1mm 

along the shear band length. At late times after shear band initiation, as many as 80 point 

loads were used. 
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y 

r l  
Figure 4.6: Diagram of steady crack growth in mode II due to action of concentrated forces 
acting a distance / behind the crack tip (Freund, 1990). This solution is integrated along 
the length of the cohesive zone to model a shear band propagating at velocity v. 

The boundary conditions for the point load problem are 

<7xy(£, ±0) = -q 5(£ + Z), Vyy(Z, ±0) = 0 (4.15) 

for —oo < f < 0 where f = x — vt. The displacement potentials from a Helmholtz de- 

composition can be derived by using functions of the complex variables Cd = £ + iajy and 

Cs = f + iotsy where o^ = sj\ — v2/cd2 and as = Jl — v2/cs
2. Because this solution de- 

pends upon the shear band velocity, this value must be determined graphically from the 

photographs. The final solution of the stresses becomes 

<7xx(€,V) 

Cyy (£>!/) 

<7x»(£,V) 

MRe { (l - a2 + 2a2) F" (&) + 2asG" (&)} 

-//Re {(l + a2) F" (Q) + 2asG" (C)} 

-iulm {2adF" (&) + (l + a2) G" {Q} 

(4.16) 

(4.17) 

(4.18) 

where 

F"(0 2ias\/l 

*D VC(c + 01* 

G"(O = -^no 

(4.19) 

(4.20) 

and fj, is the elastic shear modulus. As seen in Figure 4.6, the origin of the axes is at the tip 

of the cohesive zone, not at the notch tip. Therefore, a shift of the coordinates by the length 

of the cohesive zone is required during calculation and subsequent superposition of the stress 
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fields. This solution assumes small scale yielding, i.e. the deformation outside the cohesive 

zone is elastic and therefore can be superposed with the stress field around a stationary 

notch tip. Derivatives of Equations (4.16-4.18) for use in Equation (4.8) were obtained by 

calculating the stresses at each point shifted by a small amount Ax and then using the first 

order formula (F(x + Ax) - F(x))/Ax. This method was checked for accuracy using the 

closed form solutions of the mode II notch tip field and found to be accurate. 

Die Corner Initiation 

The solution for the complete stress field around the die corner is very similar to that of the 

notch tip. Again, a stress field around a stationary die corner is generated. The solution of 

the stresses around the die corner by Nadai [32] is the same as the mode I crack stress field 

after a rotation. Therefore, the mode I stress field is used here for consistency and is given 

by 
K (t) 

an = -^UEO-(0) (4.21) 

where for mode I 

\p2sKr 

0 L      .   0 .   301 , 
En   =   cos- <1 -sin-sin— (4.22) 

0 L      .   6 .   36) , 
£22   =   C0S2 ]1 + sm2SmT| (4-23) 

0  •  0       30 , 
E12   =   cos-szn-cos—. (4.24) 

The same assumptions apply to the mode I equations as for the mode II equations, (4.10- 

4.12). The derivatives for the mode I stress field become 

d(an + 022) Ki     _s       (Z 
— r 2 cos ' 

a,       -    VST —(2') (425) 

r~» sin (-$\ . (4.26) 
d(an + 022)   _       Ki    _a ^ fS 

dy ~   ~\fiä 

Example fringes along with the position of the die and free surface are shown in Figure 4.7. 

Again, the solid and dashed lines correspond to dark and light fringes, respectively. 
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Figure 4.7: Example fringes for the derivatives in both the x and y directions for a mode I 
deformation field. 

To model the shear band growing from the die corner, the same procedure for the 

notch tip shear band is used. The solution for a pair of concentrated shear forces acting 

on a propagating crack face is integrated along the cohesive zone length to generate the 

stress field for the entire shear band. This time, however, the solution must be rotated and 

translated as the shear band growth direction is not in the same direction as the crack axis 

from the mode I crack stress solution. This method is approximate because the dynamic 

point solution assumes an infinite elastic space and does not take into account the boundary 

conditions along the y axis. Error from the approximation should be limited to the stress 

field very near the y axis. 

4.3    Results &; Discussion 

Results for each of the two cases listed above will be presented and discussed separately. 

As the analysis of the initiation of shear bands from a notch tip is simpler and has been 

addressed to lesser degrees of accuracy by previous researchers [10, 11], these results are 

presented first. The initiation of shear bands from a die corner is presented second. 
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4.3.1    Notch Tip Initiation 

The sequence of pictures in Figure 4.8 shows the time evolution of the fringe patterns created 

by the stress field around the notch tip and subsequent shear band after impact of a C300 

specimen. The impact speed was 45 m/s. The times shown on the pictures are the time 

elapsed after impact, and the scale is shown on each picture for digitization purposes. The 

vertical black line through the picture is due to the light being removed from the framing 

camera for use in the streak camera apparatus. The shear band length was measured directly 

from these pictures. The example fringe pattern in Section 4.2.3 shows that the two frontal 

lobes of the fringe pattern meet at the shear band tip. The shear band length was measured 

as the length between the origin and the point where the frontal lobes merge. The origin is 

taken to be at the center of the notch tip and at later times is measured relative to the dark 

vertical line. This length can be plotted as a function of time to determine the average shear 

band speed needed to compute the fringe pattern after the shear band initiates, as described 

in Section 4.2.3. The average shear band speed was determined to be 650 m/s. This number 

is approximately twice the velocity reported by Mason et al. [10], but the impact speed in 

the test described here is greater than the one used by Mason. This speed is on the order of 

the shear band velocities reported by Mason et al. [17] for peak aged C300. Zhou et al. [11] 

report average shear band velocities from 80 to 1000 m/s depending upon impact speed for 

the same material for impact speeds less than 45 m/s and with larger specimens. 

With the shear band speed known, the fringe patterns from the photographs could be 

digitized and fitted to theoretical ones. Figure 4.9 shows a sequence of fringe pattern fits 

for the same photographs shown in Figure 4.8. Only the top half of the fringe pattern is 

digitized as the lower half is severely distorted due to wave interaction. (The specimen was 

impacted below the notch.) Also, no digitization points were taken inside the region where 

three dimensional effects are important. The size of this region is approximately half the 

specimen thickness [44, 46]. The solid and dashed lines represent theoretical dark and light 

fringes respectively. The circles are digitized points that should correspond to the solid lines, 
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Figure 4.8: Sequence of fringe pattern photographs of an edge notched 18Ni(300) maraging 
steel specimen impacted at 45 m/s. 
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Figure 4.9:  Sequence of fringe pattern fits for an edge notched 18Ni(300) maraging steel 
specimen impacted at 45 m/s. 
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while the x points should fall on the dashed lines. The first three graphs are modeled by pure 

mode II elastic deformation, while the last three combine the mode II elastic deformation 

and a mode II cohesive zone. The origin in these plots corresponds to the origin in the fringe 

patterns in Figure 4.8, i.e., the center of the notch tip. The digitization points for the first 

order fringe match very well until the shear band forms. After shear band formation, it 

becomes very hard to match the outer fringe while keeping good agreement with the higher 

order, inner fringes. For this reason, greater emphasis was placed on matching the higher 

order fringes as these seem to have a greater dependence upon the value of the shear stress 

used in the cohesive zone fit. In Equation (4.19), for small values of I compared to the 

spatial coordinate, the power on C is -3/2, greater than the -1/2 exponent associated with 

the mode II elastic crack solution. Additionally, the -3/2 exponent acts from the position of 

point load application, not the origin. Therefore, the cohesive zone stress field will begin to 

dominate when close to the cohesive zone but far from the origin, i.e. near the shear band 

tip. By fitting the higher order fringes more accurately near the shear band tip, the fit for 

the first order fringe becomes less accurate. This could be due to wave reflection, possible 

stress relaxation away from the shear band as propagation proceeds, or lack of ^-dominance 

at these distances. 

The shear stress and shear band length as a function of time can be seen in Figure 

4.10. The shear stress is greater than that reported by Mason et al. [10], but again, the 

impact speed of the projectile was higher. Greater impact speeds lead to greater shear band 

propagation speeds, meaning a higher strain rate within the band [11, 18]. The rate effect 

seems to be displayed here with the greater shear stresses needed to match the observed 

fringes with the theoretical. 

The stress intensity factor history can be examined in Figure 4.11. The measured values 

from the fits are plotted against the solution by Lee and Freund [20]. The first two points 

fall very close to the solution by Lee and Freund. The later points, however, show a dramatic 

increase in the stress intensity factor. This is the first frame in which the shear band has 
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Figure 4.10: Shear band lengths and cohesive zone stresses for an edge notched 18Ni(300) 
maraging steel specimen impacted at 45 m/s. 

initiated. A similar jump in the stress intensity factor is seen by Kalthoff in his measurements 

through the method of caustics [40]. The initiation stress intensity factor is estimated from 

the frame immediately prior to initiation to be 95 MPa-y/m, which is much lower than the 

value of 140 MPay'm given by Mason et al. [10]. The measured K{ for C350 from teh 1997 

annual report for this contract is 83 MPa-yin. The stress intensity factor then continues to 

increase until the last two points. At this time, the stress intensity factor appears to reach 

a constant value. It is not clear if this is caused by the wave reflection distorting the outer 

fringes or if the stress intensity factor reaches a steady state value once the shear band begins 

to propagate. 

4.3.2    Die Corner Initiation 

The initiation of an adiabatic shear band from a die corner presents a much more complicated 

situation than the notch tip initiation. The pictures in Figure 4.12 show the fringe pattern 

evolution of the initiation event. The impact speed was again 45 m/s, and the vertical black 

line is present for the same reasons mentioned above. The edge of the specimen is on the right 

side of the picture and the die corner is the the point at which the black aperture spot begins. 

This dark area above the die corner is probably due to large out of plane displacements of the 

specimen against the die and will be discussed in greater detail later. The first two pictures 
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Figure 4.11: Stress intensity factor history for an edge notched 18Ni(300) maraging steel 
specimen impacted at 45 m/s. 

exhibit fringes from the mode I elastic crack solution only, though in the second picture 

taken at 19.2/is after impact the fringes are admittedly very faint. At 22.6/^s, a change in 

the fringe shape is seen. At this point, the fringes are too small and faint to record any data 

from them, but by 26.1/xs after impact, the picture becomes much clearer. The shear band 

has propagated approximately 2.7mm into the specimen in this frame. The pattern below 

the band propagation axis is due solely to the shear band. Above the band propagation axis, 

though, interference is seen between fringes due to shear band propagation and those due 

to the compression of the specimen against the die. The last two pictures show the same 

type of behavior, with fringe patter interference occurring above the band propagation axis. 

However, as the band propagates further into the specimen, the fringes exhibit the greater 

curvature around the band tip that is expected as shown by the arrow in the last picture 

of Figure 4.12. From these graphs, the average shear band velocity was determined to be 

1020m/s. The angle of propagation with respect to the die face was measured directly from 

the specimen after test completion and was found to be 75°, in agreement withthe previous 

chapter. 

With shear band length, propagation speed and direction known, theoretical fringe pat- 
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Figure 4.12: Sequence of fringe pattern photographs of shear band initiation at the die corner 
in an AISI 4340 steel specimen impacted at 45 m/s. 
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Figure 4.13: Sequence of fringe pattern fits for shear band initiation at the die corner in an 
AISI 4340 steel specimen impacted at 45 m/s. 
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terns could be determined. Figure 4.13 displays the expected fringe patterns along with 

the digitized data points. Again, solid lines and circular points represent dark fringes and 

dashed lines and x points represent light fringes. The five graphs correspond to the fringe 

pattern photographs of the same position in Figure 4.12. As stated before, data could not 

be obtained from the picture at 22.6/is due its poor quality. The y-axis corresponds to the 

edge of the specimen, with the positive y-axis in contact with the die face and the negative 

y-axis a free surface. The first two graphs are for a purely mode I crack stress field. Inter- 

ference from reflected waves allows only a portion of the fringes to be digitized, but these 

points agree well with theory in the regions. The last three graphs include a cohesive zone 

emanating from the origin and propagating at an angle of 75° from the die face (positive 

y-axis). The first order fringes were not digitized due to the distortion of the fringes with 

those from the notch tip. Also, only points below the shear band were digitized because of 

the presence of the aperture spot against the die face above the shear band. For the regions 

away from large interference, good agreement is shown. Near the shear band propagation 

axis, the points begin to diverge away from the expected fringe pattern. 

The stress intensity factors measured from the photographs are shown in Figure 4.14 

plotted with the dimensionalized stress intensity factor history from finite element analysis. 

For the two data points where only the mode I crack solution is applicable, good agreement 

with the finite element solution is seen. However, after the shear band begins to propagate, 

another dramatic increase in the stress intensity factor occurs. And similar to the notch tip 

history, an apparent steady state value is reached. The last estimate for the stress intensity 

factor before initiation begins is 200 MPa^/in. This should be viewed as a low estimate as 

the shear band seems to initiate after this frame, but fringe analysis was hindered due to 

the quality of those frames. In the previous chapter, the initiation stress intensity factor for 

AISI 4340 steel at the die corner is estimated to be 222 MPa-y/m, which agrees very well 

with the estimate provided in this chapter. 

The shear stress used for the cohesive zone calculations for the theoretical fringe patterns 
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Figure 4.14: Stress intensity factor history at the die corner from measured values and finite 
element analysis of an AISI 4340 steel specimen impacted at 45 m/s. 

is a constant 2.5 GPa. The fringes that showed the most change due to variations in the 

shear stress were at the shear band tip and above the shear band. Unfortunately, these are 

the same fringes eliminated by the large aperture spot at the die face. Though this value 

seems very high, the tension test data from the previous chapter gives a yield strength of 

1.37 GPa for 4340 steel, it gives the best fit for the fringes. It is known from the annual 

report for this contract filed in 1997 that in these tests, a higher K exists at the die corner 

than at the notch tip. The high shear stress could be a result from the high loading rates 

involved. The increased K may also explain the greater increase in the stress intensity factor 

after shear band initiation. For the notch tip, the stress intensity factor almost tripled from 

initiation to the apparent steady state value. The initiation value at the die corner increases 

by a factor of about 4.5, possibly due to the higher loading rates. The high shear band speed 

of 1020 m/s is much higher than for the notch tip shear band in C300. Shear band speed 

is known to scale with loading rate [11], and these three facts support the conclusion that 

there is a higher K at the die corner than at the notch tip for a given impact speed. 

Though the results of the test are very promising, there are some aspects of the test 

that need to be discussed. The first issue is the large aperture spot that forms along the 

die face above the propagating shear band. As the compressive wave impinges on the die 
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face, the material expands through a Poisson effect, but friction between the specimen and 

die may prevent this expansion at the die face. Large curvatures may then form at the edge 

of the specimen reflecting light at a large enough angle to not be included in the shearing 

interferometer, thus causing a dark area on the film. The aperture spot eliminates data 

from both the purely mode I crack stress field as well as shear band propagation data. 

Most notably, determination of the shear stress in the band emanating from the die corner 

becomes very difficult. The troubling part of the aperture spot is that it is a result of three 

dimensional deformation, while all the theoretical modeling is two dimensional in nature. 

There is evidence, though, that the aperture spot only affects a local region and not the 

entire stress field. As the shear band propagates away from the die corner, the fringes 

exhibit a greater amount of curvature, as shown in the last photograph of Figure 4.12, which 

is consistent with the theoretical fringe patterns. There are two other dark regions in the 

area under analysis which are expected from the theoretical fringes. Along the path of shear 

band propagation, a long dark region forms and expands with subsequent shear band growth. 

This shear band aperture spot is easily seen in the 27.8 and 29.6 //s photographs in Figure 

4.12. Another dark region in the last photograph extends almost perpendicularly from the 

shear band aperture spot. This region again is expected from the high density of contour 

lines seen in the last graph of Figure 4.13. As much of the deformation field away from the 

die face aperture spot agrees with theory, its effect is assumed to be local and not distort the 

rest of the deformation field. In future tests however, steps should be taken in future tests 

to eliminate curvature in the specimen to make more accurate measurements and to ensure 

that a two dimensional analysis is valid. 

One other phenomenon that needs to be examined is the dramatic increase in the stress 

intensity factor observed at shear band initiation. This is seen by Kalthoff [40] and in both 

tests conducted here. It does not appear to be geometry specific as it occurs at initiation 

at the notch tip and at the die corner. As stated earlier, the cohesive zone stresses near 

the shear band tip begin to exhibit a singularity stronger than the crack tip square root 
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singularity. The cohesive zone stresses were modeled as a constant value, but this may not 

be true. There may be a distribution where the shear stresses are higher near the shear band 

tip and decrease farther away from the band tip. A schematic of this is shown in Figure 

4.15. Just as a finite distributed load on an elastic half space will resemble a point load away 

from the area of application, the shear stress distribution may be different than the constant 

stress assumed, which may lead to a greater singularity in the elastic stresses. This in effect 

would increase the measured value of a stress intensity factor while using an assumed square 

root singularity. More tests should be done and a more detailed analysis completed, though, 

before any formal conclusions are drawn. 

p 

r ? 

Shear Stress 
Distribution 

Notch 
Shear Band 

Figure 4.15: Schematic of possible shear stress variation within the shear band. 

4.4    Conclusion 

The coherent gradient sensing technique is used to examine the stress fields around adiabatic 

shear bands initiating at a notch tip and a die corner. The stress fields around the notch tip 

and die corner are modeled using the mode II and mode I stationary crack tip stress fields 

respectively. The shear band is modeled as a cohesive zone composed of shear point loads 

acting on a propagating crack face. In this way, the dynamics of the band propagation can 

be captured and the stress intensity factors Ku and Ki can be separated from the cohesive 
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zone shear stress during the fitting procedure. 

For the notch tip in C300, shear bands are observed to initiate at a stress intensity 

factor of Kj=95 IMPa^/m. The shear band propagates at an average velocity of 650 m/s 

while the average shear stress within the band is 2.1 GPa. Initiation at the die corner in a 

4340 steel specimen occurred at a stress intensity factor of about 200 MPa^m, though this 

is probably a low estimate. Average shear band speed and cohesive zone shear stress are 

1020 m/s and 2.5 GPa. In both geometries, a large increase in the stress intensity factor 

is observed after shear band initiation. A steady state value is eventually reached. In the 

die corner initiation tests, greater shear band velocities and factors of increase for the stress 

intensity factor confirm that a greater K exists at the die corner. 

Though the presence of a large aperture spot on the die face prevented full fringe patterns 

from being recorded, it is seen that there does exist an elastic stress field around the adiabatic 

shear band which can be predicted. The validity of the small scale yielding assumption is 

confirmed, and with continued experimental refinements, the use of CGS to study shear band 

initiation in different geometries can lead to accurate measurements of initiation properties. 
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